
Microsoft Research Technical Report MSR-TR-2014-121 

An Overview of Microsoft Deep QA System on Stanford 

WebQuestions Benchmark 

Zhenghao Wang, Shengquan Yan, Huaming Wang, and Xuedong Huang 

Microsoft Corporation, Redmond WA 98052 USA 

September 3rd, 2014  

 
Abstract. Question answering (QA) over an existing knowledge base (KB) such as Microsoft Satori 

or open Freebase is one of the most important natural language processing applications. There are 

approaches based on web-search motivated statistic techniques as well as linguistically oriented 

knowledge engineering. Both methods face the key challenge on how to handle diverse ways of 

naturally expressing predicates and entities existing in the KB.  The domain independent web 

information extracted from the massive amount of web usage data can be used with traditional 

semantic parsing through a unified framework. We provide such a unified framework utilizing both 

statistically motivated information-theoretic embeddings and logically driven proof-theoretic 

decoding to significantly improve Stanford’s WebQuestions QA benchmark. In comparison to 

Stanford’s state of the art ParaSempre 39.9 (F1-score), our Deep QA system achieves 45.3 on the 

same test data and protocol. 

1 Introduction 

Question Answering (QA) from an existing knowledge base (KB) has drawn significant interest from our 

industry and academia (Ferrucci et al. 2010, Kolomiyets et al. 2011, Cai and Yates 2013, Bao et al. 2014, 
Steedman 2014, Berant et al. 2014, Yao & Van Durme 2014, Bordes et al. 2014, Mooney 2014). There are 

many QA systems like IBM’s Watson that is highly optimized for vertical domains (Ferrucci et al. 2010), 

UW’s probabilistic CCG parsing with on-the-fly ontology matching (Kwiatkowski et al. 2013), Stanford’s 

semantic parsing via paraphrasing (Berant & Liang 2014), and Facebook’s subgraph embeddings (Bordes 

et al. 2014). It is one of the most important natural language processing applications to automatically 

answer open questions asked in a natural way.  Large scale structured KBs have been widely adopted in 

modern web search engines such as Bing and Google. However, open-domain QA with complex natural 

language and logic reasoning remains a major scientific and engineering challenge. The scale of the KB 

and the difficulty for machines to interpret natural language accurately make QA indeed a challenging and 
interesting problem for Artificial Intelligence. The core component of QA is natural language 

understanding that can convert natural language questions into KB appropriate queries.  

 

In open QA research systems, the UW system first maps utterances to a domain-independent intermediate 

logical form, and then performs ontology matching to produce the final logical form (Kwiatkowski et al. 

2013).  Fader et al. (2013 & 2014) also presented a system that maps questions onto simple queries by 

learning paraphrases from a large monolingual parallel corpus. In semantic parsing, typically a 

predefined set of logical constants, or an ontology, is used to construct meaning representations. In 
practice, few ontologies have sufficient coverage to support meaning representations. To associate 

unstructured natural language questions with logical predicates in the KB, we must learn that the 

constructions “What does X do for a living?”, “What is X’s profession?”, and “Who is X?”, should all map to 

the same logical predicate Profession. ParaSempre (Berant & Liang 2014) from Stanford offers the state 

of the art KB QA by using paraphrasing to exploit large amounts of text not covered by the KB. They 

approach the problem from the opposite end of (Kwiatkowski et al. 2013). They target factoid questions 

with a modest amount of compositionality. Given an input utterance, they first construct a manageable 

set of candidate logical forms. Next, they heuristically generate canonical utterances for each logical form 

based on the text descriptions of predicates from the KB. They finally choose the canonical utterance that 
best paraphrases the input utterance, and thereby the logical form that generated it. Both the association 

model based on aligned phrase pairs extracted from a monolingual parallel corpus, and retrained Google 

vector space model are used to jointly optimize for their QA training pairs.  
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Facebook recently reported their improved embedding model by providing the ability to answer more 

complicated questions via subgraph embeddings (Borders et al. 2014). They used a sophisticated 

inference procedure to consider longer paths and developed a richer representation of the answers which 

encodes the QA path and surrounding subgraph of the KB. Their approach achieved a similar F1 score on 

Stanford’s benchmark, which demonstrated the viability of subgraph embeddings. 

 

In this study, we focus on using the open Freebase (Bollacker et al. 2008) as illustrated in Figure 1. We 

focus on developing a portable system that can be easily scaled from Freebase to other KBs. The 

WebQuestions dataset contains 5,810 question-answer pairs with common questions asked by web users 

(Berant et al. 2013). This dataset is built using Freebase as the KB by crawling questions through the 

Google Suggest API, and then obtaining answers using Amazon Mechanical Turk. The WebQuestions task 

has been evaluated by many systems as reported by Liang in Figure 2. 

 
Figure 1. Freebase KB (Bollacker et al. 2008) has over 100m entities and the Stanford system used 41m 

of them for the WebQuestions benchmark. 

 

Figure 2. F1 score of several state of the art QA systems on Freebase. Questions include “What did Obama 
study in school?”, “Where to fly into bali?”, and “What was tupac name in juice?”. (Liang 2014) 
 

Our approach is similar to the Stanford system with a number of key differences. Both of these differences 

entail gains over the best published Stanford benchmark: 

 

1) Microsoft’s proprietary Affinity Intent Map (AIM) is used as one of our key matching and ranking 

features. AIM was developed to improve Bing’s intent relevance (Huang et al. 2012). Shannon’s 

information-theoretic mutual information is used as the objective function to derive embeddings 

(Pierce 1980). AIM offers semantic embeddings for most frequent words and entities.  
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2) Like the Stanford system, we also approach semantic parsing from the opposite end, i.e., from the 

KB rather than from the input question.  Instead of parsing the input question into logical form 

with a weak ontology, our approach has the advantage of utilizing the rich KB facts from the 

beginning. One potential drawback of Stanford’s approach is it may not scale to handle more 

complicated logic. A logic driven A* decoder is used to enhance the candidate generation. The 
decoder tries to construct the most probable proof, using the ground facts in the KB, for the input 

question. 

 

2 Microsoft DeepQA System Architecture 

A significant amount of crafting efforts or a sufficient amount of QA training pairs is often needed for most 

of the modern QA systems. Traditional QA systems such as IBM Watson require dealing with multiple 

steps: speech recognition or intelligent text input, syntactical parsing, semantic understanding, KB 

querying, and answer ranking/output. To answer questions such as “What is current US president’s 

brother in law’s profession?” as well as many diverse ways to paraphrase such a question like “What job 

did the brother of the first lady of the United States in 2014 have?”, the key task is to understand 

language’s massive variations, some of which may be ambiguous for relevant semantic representation. 

We also need to combine atomic pieces of knowledge in KB’s subject-predicate-object triples to answer 

many challenging natural language questions. For questions listed here, many KB triples need to be 

stitched together via logic reasoning as illustrated in Figure 3. 

 

 
Figure 3. Freebase KB triples needed via logic reasoning to answer “What is current US president’s 
brother in law’s profession?” or “What job did the brother of the first lady of the United States in 2014 

have?” 

 

These atomic facts often need to go through a proof-theoretic reasoning process to reach the answer that 

does not preexist directly in the KB (Carpenter 1997). These combinatorial explosion challenges in the 

parsing or decoding procedure need to be carefully addressed. An efficient A* decoder with a 

discriminative evaluation function is needed to construct the most probably proof of a canonical 

utterance to answer the given question from the ground facts. 

 

We borrowed many core concepts adopted in modern speech recognition for our Deep QA system (Huang 

et al. 2014).  We rely on a very similar Bayesian framework to treat many disparate layers (like in a typical 

speech recognition system) to derive the best parse (𝐴∗) for a given question Q: 

𝐴∗ = argmax
𝐴

𝑃(𝐴|𝑄)

= argmax
𝐴

𝑃(𝑄|𝐴)𝑃(𝐴)
 

Here 𝑃(𝑄|𝐴) is the posterior probability generated from the underlying model and  𝑃(𝐴) is the prior 

probability that is similar to the language model used in most spoken language systems. A parse is a proof, 

and it naturally results in a possible answer of the question. 

 

To effectively manage a massive search space under the Bayesian framework, the system is designed to 

have a three layered architecture as shown in Figure 4. We adopt the principle to gradually add broader 

contextual features that are often more expensive to derive. In general, lower layers in the system are 
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mostly focused on reducing the search space with efficiency and recall as the key objective function. 

Higher layers use more accurate and contextual features to improve precision.  

 

Facts in the KB need to be utilized much more effectively in comparison to traditional semantic parsing. 
As in most speech recognition systems, early hard decisions must be avoided to consider obscure yet 

correct constructs. We need to use the question being asked to guide the knowledge reasoning process 

and connect (semi-)structured KB with unstructured text (question). The decoder also need to derive 

knowledge on demand instead of using predetermined templates or the keyword-based web search 

framework.  

 

One of the most distinctive features in our approach is syntactical parsing, semantic understanding, logic 
reasoning, and answer ranking are treated in a truly unified manner. A large number of hypotheses in the 

form of logical formulae are explored from the KB that represent candidate semantic representations of 

possible answers leading to the given question. For each hypothesis, the given question is parsed and 

evaluated against it using a semantic scoring function through statistically motivated deep learning.  

 

 
Figure 4.  Three layered Microsoft Deep QA System Architecture Diagram 

 

3 Fast Match 

The first layer in our system (L0) is to identify a set of possible relevant entities for the input question. It 
tries to identify top 𝑁 entities (𝐸) with highest probability 𝑃(𝐸|𝑄) given the input question (𝑄).  These 

entities are critical for the next level of service (L1) to further recognize the correct answer. The recall 
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performance is the most important objective function for L0 since it is the gate through which the right 

entities pass towards subsequent layers.  If it misses the right entity, there is no chance that subsequent 

layers can recover L0 errors. On the other hand, if L0 returns too many entities, it adversely affects 

precision and latency of downstream components. 

 

The simplest implementation is to use question surface form as our matching features.  The naïve 

approach may miss correct entities implied in the query due to the diversity of natural questions. In a 

manner similar to Google’s word2vec embeddings (Mikolov et al. 2013), we used Microsoft’s internal 

Affinity Intent Map (AIM) that was developed to improve Bing’s intent matching. AIM used Shannon’s 

information-theoretic mutual information (Pierce 1980) to derive semantic embeddings for words, 

sentences and entities. AIM embeddings are used as one of our core features in L0. These AIM features 

were previously trained with a massive amount of web usage data for Bing to improve web ranking. We 

did not retrain AIM embeddings for our QA tasks so these results should be reasonably scalable for other 

open domains.  

 

AIM scores are used to rank entities based on NL parser-identified noun phrases in the input question.  

AIM-based L0 recall results are listed in Table 1. More than 10pt F1 score recall improvement is observed 

over the surface form based entity recognition. Similarly, the Stanford system also reported that 

word2vec embedding can improve Stanford F1 score significantly.  

 

Table 1. L0 recall results in Microsoft Deep QA system with and without AIM features 

WebQuestions dev set L0: surface form only L0: AIM as features 

Recall  Accuracy (F1) 66.1 77.3 

 

 

4 Unified A* Decoding  

Our unified framework combines syntactical parsing, semantic understanding, logic reasoning, and 

answer ranking in one process. A large number of hypotheses in the form of logical formulae are explored 

from the KB to represent candidate semantic representations of possible answers.  

 

For each hypothesis, the given question is parsed and evaluated using a semantic scoring function. An 

optimized A* decoder is used to derive n-best candidate answers with the corresponding syntactical and 
semantic parses for the given input question, i.e. it generates top 𝑁 candidate parses (𝐴) of the given input 

question (𝑄) based on the probability 𝑃(𝐴|𝑄) assigned by the model.  The key metrics of this layer are 

top-one F1 score and oracle F1 score for picking the parse with the best F1 prediction for each n-best list 

(i.e., each question). 

 

Our decoder is inspired by Stanford’s paraphrasing approach (Berant & Liang 2014). Candidate logical 

forms are generated with corresponding canonical utterances.  We also decomposed logical rules into 

limited amount of atomic pieces that are pieced together to form a myriad of rich logical forms.  There are 

three major differences: 

1) While Berant & Liang used only five templates, we took advantage of full-strength proof-theoretic 

logical programming to form much richer logical forms.  

2) While Berant & Liang enumerated candidate logical forms from a candidate entity, which is  

possible due to limited number of templates, we used an A* decoder to search for arbitrarily 

complicated logical formula for the input question. Figure 5 shows one possible deduction tree 

for such an example. 

3) While Berant & Liang used Google’s word2vec embeddings (Mikolove et al. 2013), we used 
Microsoft’s own maximum mutual information derived AIM embeddings. Stanford system also 

retrained word2vec embeddings for QA but we relied on domain independent AIM embeddings. 
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fb(us, official, h1)    fb(h1, title, president)   fb(h1, holder, bo)

BO is a US president    fb(h1, from, 1/10/2009)    fb(h1, to, <nil>)

BO is current US president                                             MO is BO s spouse

MO is current US president s spouse                                                                            CR is MO s brother

CR is current US president s brother-in-law    fb(cr, profession, bc)

Basketball Coach is current US president s brother-in-law s profession

What is current US president s brother-in-law s profession?

fb(cr, parent fcr)    fb(mo, parent, fcr)

CR is MO s sibling   fb(cr, gender, male)

fb(bo, marriage, m1)    fb(m1, person, mo)

Figure 5. One possible deduction tree for “What is current US president’s brother in law’s profession?”  

fb(subject, predicate, object) stands for Freebase fact.  For brevity, a few inferences are dropped and the 

inference rule names are omitted without loss of readability. 

 

In comparison to Stanford’s latest results (Berant & Liang 2014), our WebQuestions development set 

results are shown in Table 2. 

 

Table 2. Microsoft Deep QA and Stanford Berant & Liang 2014 System 

WebQuestions dev set Stanford ACL14 Cand 

Gen 

Microsoft Deep QA 

L1 
Deep QA L1 

(surface form L0) 

Recall Accuracy (F1) 63.0 77.3 66.1 

Top-one Accuracy (F1) 31.3 (JACCARD) 40.8 37.5 

 

Our A* decoder currently used only simple surface-form features as A* decoding evaluation function to 
handle the massive search space. Without ranking, Stanford results are also shown in the table.  With AIM 

features in L0, we significantly outperformed Stanford’s simple candidate generation both in oracle and 

top-one accuracies. Without AIM features in L0, the results are still measurably better (63.0 vs 66.1).  

 

5 Post Ranking  

The post ranking layer (L2) is to utilize more powerful contextual features that are too expensive to use 

in the A* decoder to further refine candidate answers. Once again, we used the same Bayesian framework 

to optimize for the best answer.   

 

The L2 ranker is currently implemented as a log-linear model using a large number of lexicalized features 

such as AIM and DSSM scores (Gao et al. 2014). The parameters of the log linear model is learned using 
L-BFGS, with L1-regulation to avoid over fitting (Andrew & Gao 2007). By utilizing features such as 

WDDC06 match (Wan et al. 2006), AIM, and a subset of association model features, the final answer for 

the given input question is derived.  

 

6 Experimental Results  

Microsoft Deep QA system is compared with many other systems in terms of F1 score using the Stanford 

evaluation script1. Cross validation is used to find optimal parameters of our model. Facebook recently 

considered an ensemble of its approach (Bordes et al. 2014) with the Stanford system (Berant & Liang 

2014) to achieve the best reported number of 41.8 on the WebQuestions test set. For the individual 

system, the Stanford system (Berant & Liang 2014) still has the best F1 score (39.9) among all systems 

reported. Table 3 illustrates our Deep QA results (45.3) in comparison to these state of the art QA systems. 

Interestingly, our n-best F1 score is approaching 77.3 in comparison to our top 1 F1 score of 45.3. There 

is a very significant room for future improvement. 

 

                                                                    
1 Available from www-nlp.stanford.edu/software/sempre/ 
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Table 3. Results on the WebQuestions test set using Berant & Liang’s F1 evaluation method. Other 

systems were reported by (Bordes et al 2014) 

 

Method F1 Score (Berant & Liang 2014) 

Stanford (Berant et al. 2013) 31.4 

Borders et al. 2013 29.7 

Fader et al. 2014 35.0 

Yao and Van Durme 2014 33.0 

Stanford (Berant & Liang 2014) 39.9 

Facebook (Bordes et al. 2014) 39.2 

Ensemble of Facebook & Stanford (Borders et al. 2014)  41.8 

Our Approach: Microsoft Deep QA 45.3 

Our Approach: Microsoft Deep QA N-best from L1 (Upper bound) 77.3 

 

 

7 Conclusion 

This paper presented a new unified framework motivated by both statistically-driven information 

theoretic mutual information embeddings and logically-driven proof-theoretic semantics to address one 

of the most challenging QA tasks for open-domain and open-topic QA.  Our Deep QA system provides a 

parsed structure and proof tree among answers, and can achieve very encouraging performance on the 

competitive Stanford benchmark WebQuestions. 
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