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Stream of Thoughts

• New wave of interest in connectionist’s approach, 
due to the reported success with Deep Neural Net

• This is a commentary, not about “how to do DNN” 
but “how to understand DNN”

• Follow framework of statistical pattern recognition
– Understand what is being accomplished and 

how it is being accomplished
– Think about what may be missing or otherwise 

possible
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What is Deep Neural Net?

?

Did it really take 60 years?

Statistical Pattern Recognition



Pattern Recognition – Bayes Theory

Problem Statement: 
To identify an unknown observation as one of       
classes (of events or species) with minimum probability 
of error:

► Conditional Error: given      , the cost associated with 
deciding that it is an ith class event

► Expected error, risk or cost:
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Statistical Pattern Recognition

Given a set of design samples                   with known 
class identity, where                                                                
estimate

to implement the Maximum a Posteriori (for 0-1 error) 
decision to achieve Bayes minimum error.
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Essence of statistical methods (vs. heuristics/others):
– Learning (finding the distributions) from data
– “Consistency” with formulation of error probability
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Issues in Practice

• Raw observations/measurements vs. feature
• Distribution

– Form: form is in fact substance; form is unknown; wrong form 
means sub-optimality; form comes before parameter

• Data
– Quantity: the more the better
– Quality: sampling bias and error, rarely explicitly addressed

• Boundary Representation
– Implicit: let the distribution parameters decide
– Explicit: define boundary from data w/o assuming distribution
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Toy Example – Simulation

1C

1C 2C

2C

• 2-class problem
• Contour of true 

pdfs as plotted
• 1000 random 

points from each 
class; ~1/4 used for 
test

• 600 runs
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Toy Example – Linear and RBF SVM

• Inseparable 2-class problem
• 1000 random points from each class; ~1/4 used for 

test
• 600 runs
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Average Error Rate (over 600 Runs)

Model # param
Original pdf 20
Max of mix pdf 20
k-NN (k=1) 1500

SVM-
linear

Train 2 (~1200)

Test 2

SVM-
RBF

Train ~500
Test ~500

Max mix model pdf 20
Mix-model pdf 20

Mean Error rate
0.0950
0.0958
0.1316
0.3784
0.3893
0.0955
0.0988
0.0965
0.0960

SVM with linear 
boundary fails 
miserably due to 
mismatch in the 
implicit choice of 
model

2015 DNN-Perspective B.H. Juang 10

Some Important Insights

• System using true distributions is best in both 
performance and efficiency as predicted by theory 

• Decision based on local likelihood is competitive in 
the example – idea of “ensemble of local models”?

• SVM relies on local optimization; performs well but 
is not efficient; may be sensitive to bias

• kNN uses strictly local knowledge but is both un-
optimized and un-structured (un-optimized SVM?)

• Model based recognizer can be as good as any
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ML/PR Problem & Approaches

→),( jXPNeed Estimate                  and)|( jXP )( jP
)(/)()|()|( XPjPjXPXjP =

)~,|(~)|( θjXPjXP ← Pick a distribution parameterized 
by       to match trueθ )|( jXP

),|(~ θjXP← Approximate the true distribution by 
mixture of easy distributions, e.g., Gaussian

),|)((~ θjXfP← Xfind transform of        to match easy 
distributions, e.g., Gaussian or MRF

),|)((~ θjXfP >← Xfind transform of       with reduced 
dimensionality to match easy distributions, 
e.g., Gaussian or MRF, and possibly 
mixture of them
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“Feature” – Convention & Question

• Raw data contains components (interference, noise or 
superfluity) that hinder the decision process

• Use independent knowledge (from experts or heuristics) 
to extract “feature” from data

Feature 
extraction

Statistical 
modeling

“Optimal” 
Decisiondata

ModelsTraining stage

• Is it possible to accomplish “feature extraction” and 
“statistical modeling” together “intimately”? 

• Can we let the data speak for itself ?? !
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Do Not Separate Feature from Model

• There is a (bad) tendency to treat the two separately
– Feature needs to make consistent sense with existing 

knowledge (so-called experts tell us so)
– Distribution model is just a tool – pick one you have 

code to estimate and compute; too casual
• The best feature is one that both makes sense and can be 

well modeled by a function you can handle

Alternative (and New) Paradigm – fuzzy boundaries between stages

Data-driven
Transformation

Class Identity 
Retrieval

Data DecisionModeling for 
discrimination 

2015 DNN-Perspective B.H. Juang 14

Multivariate Models

NIST Digits

The issue of representation for statistical pattern recognition is finding 
feature, the uncertainty of which can be characterized by a distribution
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How to Represent & Model A Bit Pattern?

• An D2 dimensional binary vector in run-length 
representation:

• 28-dimensional vector (each row or column of 
28 bits converted to a real number) in 
Euclidean space – 28-d Gaussian w/ mixture

• An D2-dimensional Gaussian Multivariate

• Markov Random Field
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Example of A Clique System
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Example for illustration:

• System needs not have only uniform connections
• Sparsity in connection can be reflected in the connection 

weight – in learning, let the data speak!
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Gauss-Markov Random Field
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0-mean for 
simplicity

Weights are related to precision matrix; 
clique system imposes constraints on 
summation, reduces model complexity
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Connectionist’s Models 
– a.k.a. Artificial Neural Networks

Conceptual Neural Networks in Brain

McCulloch-Pitts Neurons

McCulloch-Pitts Neuron, which 
focuses on computational 
utility, is one among many 
models:

• Hodgkin–Huxley
• FitzHugh–Nagumo
• Integrate-and-fire
• Leaky IAF
• Exponential IAF
• Morris–Lecar
• Hindmarsh–Rose
• More …..
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Connectionist Models

• Constitutive processing unit: McCulloch-Pitts Neuron

• Feedforward Neural Networks (Function 
Approximation)
‒ Perceptron (Rosenblatt, 1957): single layer feedforward network; 

kernel perceptron (Aizerman et al, 1974)
‒ Multilayer Perceptron or multilayer feedforward neural networks 

(backpropagation by Werbos, 1974)

• Recurrent Neural Networks (Auto-association 
memory, retrieval with partial information)
‒ Hopfield net (Hopfield, 1982); Boltzmann machine (Hinton & 

Sejnowski, 1985)
‒ Self-organizing (feature) map (Kohonen map, 1982) & learning VQ 

– interpreted as using the closest prototype as retrieved memory
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Multilayer Feed-forward Networks
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• Number of layers and 
numbers of hidden units 
are not constrained;

• D-dimensional input data 
vector assume real values 
(non-binary) in most MFNs

• Temporal firing activity is 
usually grossed over

• Capable of approximating 
functions w/ arbitrary 
closeness
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McCulloch-
Pitts Neuron
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Recurrent Networks – Hopfield Nets

1 2

3 4

IN

OUT

4-node Hopfield Net
1−z

1−z
1−z

1−z

Input

Output

• Hopfield nets are recurrent ANN and serve as content-addressable memory 
systems with binary threshold nodes; can store ~ bit patterns

• System energy is low if the weights emphasize the pair of nodes that behave 
coherently; given a binary vector input, it converges to one of the “stored” 
patterns that demonstrates highest coherence
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Use of RNN in Decision – No Success
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以聯想當決策? 經辨證以決策?

先聯想後辨證?

Boltzmann Machine

A recurrent neural net, similar to Hopfield net, but 
stochastic

Input, visible nodes

Invisible nodes
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Again, binary nodes
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Restricted Boltzmann Machine (RBM)

Input, visible nodes

Invisible nodes
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• RBM is a generative stochastic RNN: given an input vector it 
finds the network state with highest probability

• Conditional independence among nodes of same layer
• Trained with contrastive divergence algorithm
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RBM Implements Gauss-Markov R-F
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For easy visualization, assume 0-mean,

Then for a group of units, treated as binary and hidden
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RBM as Vehicle for MRF

],[ hvx =h

v
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Remarks

• The Boltzmann machine, as an RNN, converges to 
most probable state defined by the weight matrix, 
which has been trained by the provided data

• Multivariate Gaussian is the underpinning model; 
pay attention to precision matrix

• Markov property reduces the correlation structure; 
the clique system needs not be based on adjacency

• RBM learns the multivariate correlation structure 
of an MRF via the hidden node layer; it learns the 
correlation from data, not from human experts
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Gaussian-Bernoulli RBM as RNN

2-in

8-out • RBM trained on Gaussian bi-variate –
to “memorize” the location of a point

• In test, random data in U(-5,5,-5,5)

Converge to a 
point indeed!
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G-B RBM (2Mix 1RBM) – 2-point Memory

2-in

8-out • Single RBM trained on 2-mix Gaussian independent 
bi-variate; tested w/ both 2-mix r.v. and uniform r.v.

• Convergence contour appears a straight line with 
high density at ends and sparse in-between
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Gaussian-Bernoulli RBM (Attractor)

2-in

8-out • Single RBM trained on 2-mix Gaussian 
independent bi-variate

• Tested with uniform r.v.
• Convergence contour appears a straight line 

with high density at ends
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G-B RBM (4-Mix 1-RBM) – 4-pt Memory

2-in

8-out • One RBM trained, on 4-mix bi-variate
• Evaluated on both 4-mix and U(-10,10)

Originally 4 
clusters, 
corresponding to 
4-point memory; 

U(-10,10)
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RBM Convergence as an RNN

RBM on “2”, 2000 h-units
Input: random bits, “0”-”9”

Iteration →

36 random bit patterns as input
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Developmental Remarks

• The RBM learns from data the multivariate 
correlation structure of an MRF via the hidden 
node layer

28

28

• Data dimensionality = 784
• Covariance has 307720 parameters. How many 

patterns are needed for reliable estimation of the 
covariance?

• MNIST dataset has ~100K patterns per digit. Is 
that enough for estimating 307K parameters?

• Casual heuristics do not solve the traditional 
estimation problem; smart to quickly capture 
dimension pairs with significant correlation
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RBM as RNN with Noisy Input

Noise free data on digit 2 model Noisy data (w/ N(0,1/25)) on digit 2 model
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RBM as RNN with Very Noisy Input

Noise free data on digit 2 model Noisy data (w/ N(0,1)) on digit 2 model

may be better than    
1-forward calculation
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A Closer Look

2

8

9
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recurrent epochs



Deep Belief Network & Deep 
Neural Network

Turning RNN into FNN & Autoencoder

W~

v

v
W

RBM as RNN
Bi-directional 
connections

Error 
propagation 
to fine tune
at various 
layers

W~

W ′

W

W ′

W

Equivalent   
uni-directional 
Feedforward 
connections



Unrolling 
an RBM

Desired output
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From Neural Nets to Deep Neural Nets

MLP
One hidden 

layer MLP
Many hidden 

layers

MLP

Generative pre-
training with RBM

Binary feature, 
distribution of 
which can be 
well 
approximated 
by FNN above; 
data-driven 
feature 
extraction

DBN

The "vanishing gradient problem," 
thesis of Hochreiter (1991)
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From RBM to Deep Belief Networks

• Deep Belief Networks (DBN): Stacking up layers of RBM and 
augment final layers with feedforward-like networks
– Use of RBMs: internal representation of data – data-

driven feature extraction; noise suppression, kernel 
transformation → prepare to match data & distribution

– Use of feedforward nets: logistic regression, function 
approximation, discrimination, classification, …

Input, visible nodes

DBN
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Deep Neural Nets

MLP

Generative pre-training 
with RBM

DBN

• No longer use RBM as RNN – focus on 
salient feature selection, suppressing & 
discarding low correlation components 

• Further away from decision layer, less 
affected by error back propagation, 
retain saliency in representation

• Middle layers – adjust internal 
representations (incl. interpolation) to 
ultimately help minimize decision error

• Use MLP for explicit decision mapping –
take advantage of function 
approximation capability  }{)( iCyX ∈→ϕ
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聯想

辨證
Deep Learning

Back to Statistical Pattern Recognition

• Statistical methods are important in data 
analysis

• Many see statisticians as “data scientists”
• Statistics involves lots of data, but statistics 

only addresses ONE aspect of data 
behavior – its distribution, utility of which 
(e.g., inference) notwithstanding

• Structure of data may exist in a non-trivial 
manifold
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Statistical Pattern Recognition?

C1 = {0.4306, 0.6448, 0.4714, 0.4849, 0.3556, 0.4174, 0.3073, 
0.5443, 0.4315, 0.6025, …}
C2 = {0.3789, 0.5677, 0.4149, 0.4267, 0.3129, 0.3673, 0.2705, 
0.4793, 0.3799, 0.5303, …}

Class 1 Class 2
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Which Manifold?

),( 21 nnrc =→
)2,10000mod(1 cn =
)3,10000mod(2 cn =

C1 = {0.4306, 0.6448, 0.4714, 0.4849, 0.3556, 0.4174, 0.3073, 0.5443, 0.4315, 0.6025, …}
C2 = {0.3789, 0.5677, 0.4149, 0.4267, 0.3129, 0.3673, 0.2705, 0.4793, 0.3799, 0.5303, …}
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Given 4-tuples                       , find THE relationship

Space, Structure, Manifold, What Else?
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Empirical 
data:
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−b ± b2 − 4ac
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Machine learning by regression example:
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Final Thoughts

Mixture Models – Worth a Revisit

• Statistical modeling (pdf estimation) followed by discrimina-
tive modeling (e.g., training on minimum classification error 
criterion) has been a common practice for quite some time

• Has Gaussian mixture model been vindicated? Yes, if you 
understand what RBM/DBN is trying to do

• How to handle large Time-Freq spectral patterns, more than 
one frame at a time, in statistical models?

– Work on MRF to alleviate problems in covariance matrix estimation
– Data reduction techniques that preserve the segmental level of inter-

frame correlation
– Retain representations that can take advantage of many traditional 

enhancement techniques (signal enhancement, normalization, 
adaptation in feature space, …)


