
Mannual for Sequence-to-Sequence Generation

Yang Feng

December 15, 2016

1 Introduction

There are many open-source implementations of the sequence-to-sequence gen-
eration model, and in this document I will introduce the details of the version
implemented with tensorflow. The main idea of the sequence-to-sequence model
is based on encoder-decoder framework, that is, all the input words are feed to
an encoder to get a tensor to express it together with a tensor for each input
word for the attention calculation in decoder. Then the decoder uses the input
vector and the attention of all the hidden vectors to generate target works one
by one.

2 rnn handbook

2.1 translate.py

1. train()

get the vocabulary and convert the training set and dev set to ids;
create model;
randomly select a bucket;
randomly select the batch for the bucket for step(..);
step(..);
calculate the loss;
if checkpoint then

then save the model;
end if

2. read data(source path, target path, max size=None)
Read data from source and target files and put into buckets.

Args:
source path: path to the files with token-ids for the source language.
target path: path to the file with token-ids for the target language; it
must be aligned with the source file: n-th line contains the desired output
for n-th line from the source path.

1

max size: maximum number of lines to read, all other will be ignored; if
0 or None, data files will be read completely (no limit).

Returns:
data set: a list of length len(buckets); data set[n] contains a list of
(source, target) pairs read from the provided data files that fit into the
n-th bucket, i.e., such that len(source) ¡ buckets[n][0] and len(target) ¡
buckets[n][1]; source and target are lists of token-ids.

3. create model(session, forward only)

create an objection of class Seq2SeqModel;
if there exists checkpoint model then

load it;
else

initialize the parameters;
end if

2.2 data utils.py

prepare wmt data(data dir, en vocabulary size, fr vocabulary size, tokenizer=None)
Get WMT data into data dir, create vocabularies and tokenize data.

Args:
data dir: directory in which the data sets will be stored.
en vocabulary size: size of the English vocabulary to create and use.
fr vocabulary size: size of the French vocabulary to create and use.
tokenizer: a function to use to tokenize each data sentence; if None, ba-
sic tokenizer will be used.

Returns:
A tuple of 6 elements:
(1) path to the token-ids for English training data-set,
(2) path to the token-ids for French training data-set,
(3) path to the token-ids for English development data-set,
(4) path to the token-ids for French development data-set,
(5) path to the English vocabulary file,
(6) path to the French vocabulary file.

2.3 seq2seq model.py

1. get batch(self, data, bucket id)
Get a random batch of data from the specified bucket, prepare for step.

Args:
data: a tuple of size len(self.buckets) in which each element contains lists

2

of pairs of input and output data that we use to create a batch.
bucket id: integer, which bucket to get the batch for.

Returns:
The triple (encoder inputs, decoder inputs, target weights) for the con-
structed batch that has the proper format to call step(...) later. These
three vectors are a list of batch-major vectors.
encoder inputs, decoder inputs: is set to the length of the bucket
encoder size with pad id.
target weights: are set to 1 for the real input element and 0 for pad
element.

2. init (self, source vocab size, target vocab size, buckets, size,
num layers, max gradient norm, batch size, learning rate, learn-
ing rate decay factor, use lstm=False, num samples=512, for-
ward only=False)
Create the model.

Args:
source vocab size: size of the source vocabulary.
target vocab size: size of the target vocabulary.
buckets: a list of pairs (I, O), where I specifies maximum input length
that will be processed in that bucket, and O specifies maximum output
length. Training instances that have inputs longer than I or outputs longer
than O will be pushed to the next bucket and padded accordingly. We
assume that the list is sorted, e.g., [(2, 4), (8, 16)].
size: number of units in each layer of the model.
num layers: number of layers in the model.
max gradient norm: gradients will be clipped to maximally this norm.
batch size: the size of the batches used during training; the model con-
struction is independent of batch size, so it can be changed after initial-
ization if this is convenient, e.g., for decoding.
learning rate: learning rate to start with.
learning rate decay factor: decay learning rate by this much when
needed.
use lstm: if true, we use LSTM cells instead of GRU cells.
num samples: number of samples for sampled softmax.
forward only: if set, we do not construct the backward pass in the model.

Details:

determine whether to use tf.nn.sampled softmax loss(..);
determine which kind of cell to use, LSTM, GRU or MultiRNNCell;
if forward only then

create a seq2seq model with decoding;

3

determine whether to use output project(a linear wrapper of the out-
put);

else
create a seq2seq model without decoding;
for each bucket do

clip the gradient;
update the parameters;

end for
end if

3. step(self, session, encoder inputs, decoder inputs, target weights,
bucket id, forward only)
Run a step of the model feeding the given inputs.

Args:
session: tensorflow session to use.
encoder inputs: list of numpy int vectors to feed as encoder inputs.
decoder inputs: list of numpy int vectors to feed as decoder inputs.
target weights: list of numpy float vectors to feed as target weights.
bucket id: which bucket of the model to use.
forward only: whether to do the backward step or only forward.

Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the outputs.

Raises:
ValueError: if length of encoder inputs, decoder inputs, or target weights
disagrees with bucket size for the specified bucket id.

2.4 seq2seq.py

embedding attention seq2seq(encoder inputs, decoder inputs, cell,
num encoder symbols, num decoder symbols, embedding size, num heads=1,
output projection=None, feed previous=False, dtype=dtypes.float32,
scope=None, initial state attention=False)
Embedding sequence-to-sequence model with attention.

This model first embeds encoder inputs by a newly created embedding
(of shape [num encoder symbols x input size]). Then it runs an RNN
to encode embedded encoder inputs into a state vector. It keeps the
outputs of this RNN at every step to use for attention later. Next, it
embeds decoder inputs by another newly created embedding (of shape

4

[num decoder symbols x input size]). Then it runs attention decoder, ini-
tialized with the last encoder state, on embedded decoder inputs and at-
tending to encoder outputs.

Args: encoder inputs: A list of 1D int32 Tensors of shape [batch size].
decoder inputs: A list of 1D int32 Tensors of shape [batch size].
cell: rnn cell. RNNCell defining the cell function and size.
num encoder symbols: Integer; number of symbols on the encoder side.
num decoder symbols: Integer; number of symbols on the decoder side.
embedding size: Integer, the length of the embedding vector for each
symbol.
num heads: Number of attention heads that read from attention states.
output projection: None or a pair (W, B) of output projection weights
and biases; W has shape [output size x num decoder symbols] and B has
shape [num decoder symbols]; if provided and feed previous=True, each
fed previous output will first be multiplied by W and added B.
feed previous: Boolean or scalar Boolean Tensor; if True, only the first
of decoder inputs will be used (the ”GO” symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding rnn decoder).
If False, decoder inputs are used as given (the standard decoder case).
dtype: The dtype of the initial RNN state (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to ”embedding attention seq2seq”.
initial state attention: If False (default), initial attentions are zero. If
True, initialize the attentions from the initial state and attention states.

Returns:
A tuple of the form (outputs, state), where: outputs: A list of the
same length as decoder inputs of 2D Tensors with shape [batch size x
num decoder symbols] containing the generated outputs.
state: The state of each decoder cell at the final time-step. It is a 2D
Tensor of shape [batch size x cell.state size].

linear(args, output size, bias, bias start=0.0, scope=None) Linear map:∑
i(args[i] ∗W [i]), where W [i] is a variable.

Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias start: starting value to initialize the bias; 0 by default.
scope: (optional) Variable scope to create parameters in.

Returns:
A 2D Tensor with shape [batch x output size] equal to

∑
i(args[i]∗W [i]),

where W [i]s are newly created matrices.

5

Raises:
ValueError: if some of the arguments has unspecified or wrong shape.

3 tensorflow handbook

3.1 array ops

concat(concat dim, values, name=’concat’) Concatenates the list of ten-
sors values along dimension concat dim.

reshape(tensor, shape, name=None) Given tensor, this operation returns
a tensor that has the same values as tensor with shape shape.

3.2 math ops

reduce sum(input tensor, axis=None, keep dims=False, name=None, reduction indices=None)
Reduces input tensor along the dimensions given in axis. Unless keep dims
is true, the rank of the tensor is reduced by 1 for each entry in axis. If
keep dims is true, the reduced dimensions are retained with length 1. If
axis has no entries, all dimensions are reduced, and a tensor with a single
element is returned.

3.3 control flow ops

cond(pred, fn1, fn2, name=None) Return either fn1() or fn2() based on
the boolean predicate pred.

6

