One-shot Voice Conversion

Background

- One/zero-shot ?
 - One-shot: few or even only one training sample, it can still make prediction
 - Zero-shot: There are no training samples for this class. But we can learn a mapping X -> y

Unsupervised VC

- Incorporate ASR system to perform unsupervised VC Shortage :highly depend on the accuracy of the ASR system
- Utilize deep generative model like VAE or GAN
 Shortage: not synthesize the voice of the speakers who were never seen in training phase

Chou J, Yeh C, Lee H. One-shot voice conversion by separating speaker and content representations with instance normalization[J]. arXiv preprint arXiv:1904.05742, 2019.

Solution

- Assume : utterance = speaker representation + content representation
- Model
 - speaker encoder: encode the speaker information
 - content encoder: encode only the linguistic information
 - decoder: synthesize the voice back by combining these two representations

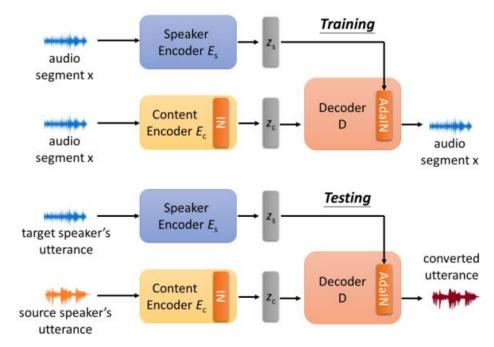


Figure 1: Model overview. E_s is speaker encoder; E_c is content encoder and D is decoder. IN is instance normalization layer without affine transformation. AdaIN represents adaptive instance normalization layer.

Details

Variational autoencoder

$$L_{rec}(\theta_{\mathcal{E}_{s}}, \theta_{\mathcal{E}_{c}}, \theta_{\mathcal{D}}) = \underset{x \sim p(x), z_{c} \sim p(z_{c}|x)}{\mathbb{E}} [\| \mathcal{D}(\mathcal{E}_{s}(x), z_{c}) - x \|_{1}^{1}].$$

$$L_{kl}(\theta_{E_c}) = \mathbb{E}_{x \sim p(x)}[\|E_c(x)^2\|_2^2].$$

$$\min_{\theta_{\rm E_s},\theta_{\rm E_c},\theta_{\rm D}} L(\theta_{\rm E_s},\theta_{\rm E_c},\theta_{\rm D}) = \lambda_{rec} L_{rec} + \lambda_{kl} L_{kl}$$

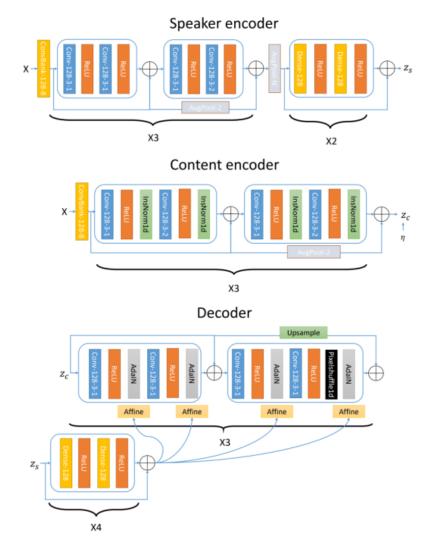


Figure 2: The architecture of the encoders and decoder.

Details

- Instance Normalization for Feature Disentanglement
 - instance normalization (IN) without affine transformation(remove the speaker information while preserving the content information)

$$\mu_c = \frac{1}{W} \sum_{w=1}^W M_c[w],$$

$$\sigma_c = \sqrt{\frac{1}{W} \sum_{w=1}^W (M_c[w] - \mu_c)^2 + \epsilon},$$

$$M_c'[w] = \frac{M_c[w] - \mu_c}{\sigma_c}$$

 enforce the speaker encoder to generate speaker representation(adaIN)

$$AdaIN(\mathbf{x}, \mathbf{y}) = \sigma(\mathbf{y})(\frac{\mathbf{x} - \mu(\mathbf{x})}{\sigma(\mathbf{x})}) + \mu(\mathbf{y})$$

Table 1: The accuracy for speaker identity prediction on content representation. Smaller value means less speaker information in the content representation.

E _c with IN	E _c w/o IN	$\rm E_{c}$ w/o IN + $\rm E_{s}$ with IN
0.375	0.658	0.746

Experiments

- Dataset:CSTR VCTK Corpus(109 speakers)
 - Train:80 speakers
 - Validation:9 speakers
 - Test:randomly selected 20 speakers

https://zhitiankai.github.io/

AGAIN-VC System overview

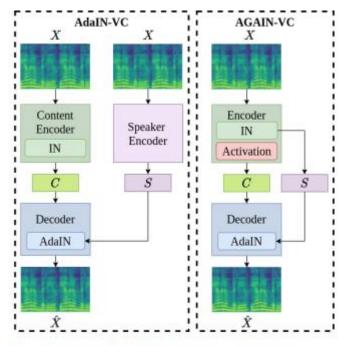


Fig. 1: AdaIN-VC and AGAIN-VC. AdaIN-VC uses a content encoder and a speaker encoder, while AGAIN-VC uses only one encoder and an activation to guide the training.

 AGAIN-VC: Activation Guidance and Adaptive Instance Normalization.

 With a proper activation as an information bottleneck on content embeddings

[2] Chen Y H, Wu D Y, Wu T H, et al.: A One-shot Voice Conversion using Activation Guidance and Adaptive Instance Normalization[J]. 2020.

Activation guidance (AG)

$$Sigmoid(x) = \frac{1}{1 + \exp(-\alpha x)},$$

Table 1: Comparison between the models with different activation functions. C and S are the speaker classification accuracy on content embeddings and speaker embeddings, respectively, and Rec. represents the reconstruction error. * is our proposed method.

Activation	<i>C</i> (Acc.%)↓	S (Acc.%) \uparrow	Rec. ↓
None	68.6	92.6	0.161
ReLU	51.9	92.2	0.174
ELU	69.2	91.5	0.167
Tanh	57.3	91.7	0.165
Sigmoid ($\alpha = 1$)	30.5	90.0	0.167
Sigmoid ($\alpha = 0.1$) *	1.7	93.2	0.151
Sigmoid ($\alpha = 0.01$)	1.7	91.1	0.222

Table 2: Comparison between the models using a single encoder (1-Enc) and those with two encoders (2-Enc). Note that C and S represent the speaker classification accuracy on content embeddings and speaker embeddings, respectively; Rec. is the reconstruction error, and the last column is the model size. Also, "-sig" represents that sigmoid ($\alpha = 0.1$) is added on C; * is our proposed method.

	C (Acc.%)↓	S (Acc.%) ↑	Rec.↓	Size↓
1-Enc	68.6	92.6	0.161	9.5 M
2-Enc	67.2	91.5	0.167	13.5 M
1-Enc-sig *	1.7	93.2	0.151	9.5 M
2-Enc-sig	1.8	92.7	0.154	13.5 M

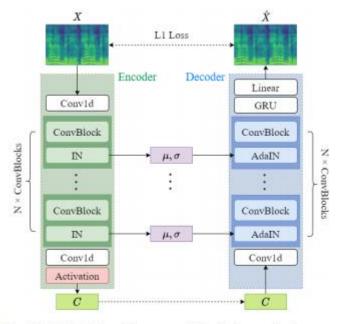


Fig. 2: AGAIN-VC architecture. The left part is the encoder, while the right part is the decoder. Note that L1 Loss is to make the input X and the output \hat{X} as close as possible.

