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Abstract
Recurrent neural network architectures have been shown to effi-
ciently model long term temporal dependencies between acous-
tic events. However the training time of recurrent networks is
higher than feedforward networks due to the sequential nature
of the learning algorithm. In this paper we propose a time de-
lay neural network architecture which models long term tem-
poral dependencies with training times comparable to standard
feed-forward DNNs. The network uses sub-sampling to reduce
computation during training. On the Switchboard task we show
a relative improvement of 6% over the baseline DNN model.
We present results on several LVCSR tasks with training data
ranging from 3 to 1800 hours to show the effectiveness of the
TDNN architecture in learning wider temporal dependencies in
both small and large data scenarios.
Index Terms: time delay neural networks, acoustic modeling,
recurrent neural networks

1. Introduction
Modeling the temporal dynamics in speech, to capture the long
term dependencies between acoustic events, requires an acous-
tic model which can effectively deal with long temporal con-
texts. Two types of approaches to exploit long term temporal
contexts are using feature representations, which are designed
to present this information to the model in a suitable form, or
using acoustic models, which can learn the long term depen-
dencies based on short-term feature representations.

In this paper we adopt the model based approach. Recur-
rent neural networks (RNNs) which use a dynamically changing
contextual window over all of the sequence history rather than
a fixed context window have been shown to achieve state-of-art
performance on LVCSR tasks [1]. However due to recurrent
connections in the network, parallelization during training can-
not be exploited to the same extent as in feed-forward neural
networks.

Another neural network architecture which has been shown
to be effective in modeling long range temporal dependencies
is the time delay neural network (TDNN) proposed in [2]. This
architecture uses a modular and incremental design to create
larger networks from sub-components [3]. Despite being a feed-
forward architecture, computing the hidden activations at all
time steps is computationally expensive. We propose a sub-
sampling technique where hidden activations at only few time
steps are computed at each level. Through a proper selection of
time steps, at which activations are computed, computation can
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be reduced, while ensuring that information from all time steps
in the input context is processed by the network.

Neural network architectures have been shown to benefit
from speaker adaptation. However, speaker adaptation tech-
niques like fMLLR [4] require two passes of decoding. The 2-
pass decoding strategy is difficult to use in online speech recog-
nition applications. iVectors which capture both speaker and
environment specific information have been shown to be use-
ful for instantaneous and discriminative adaptation of the neu-
ral network [5, 6]. In this paper we use iVector based neural
network adaptation.

The paper is organized as follows. Section 2 mentions rel-
evant work, Section 3 describes the neural network architecture
and training recipe in greater detail. Section 4 describes the
experimental setup. Section 5 presents and analyzes the results
primarily on the Switchboard [7] task. It also presents results on
other LVCSR tasks which have 3-1800 hours of training data.
Section 6 presents the conclusions and the future work.

2. Relevant work
Feature representations such as TRAPs [8], wavelet based
multi-scale spectro-temporal representations [9], deep scat-
tering spectra [10] and other modulation feature representa-
tions [11] have been proposed to represent long term spectro-
temporal dynamics of the signal. These features can be used
with standard feed-forward DNNs to model relationships in
wide temporal contexts.

On the other hand, recurrent neural network (RNN) archi-
tectures such as long term short term memory networks [12, 1]
and feed-forward neural network architectures, such as time de-
lay neural networks (TDNNs) [2], have been shown to effec-
tively learn the temporal dynamics of the signal from short term
feature representations.

Due to dependencies between the time-frames being pro-
cessed in an RNN, parallelization cannot easily be be exploited
to the same extent as in feedforward networks. Batching of
sequences and distributed optimization can be used to paral-
lelize the RNN training process. However the training times
are still not competitive with those of feed-forward neural net-
works, especially when using GPUs. Saon et al. [13] have
shown that through unfolding of the recurrent network during
training, matrix-matrix operations can be exploited to speed-up
training. However when using more complicated architectures
such as LSTMs the unfolding strategy is non-trivial.

In this paper we use the feed-forward TDNN architecture
for modelling long term temporal dependencies in short-term
speech features.



3. Neural network architecture
When processing a wider temporal context, in a standard DNN,
the initial layer learns an affine transform for the entire temporal
context. However in a TDNN architecture the initial transforms
are learnt on narrow contexts and the deeper layers process the
hidden activations from a wider temporal context. Hence the
higher layers have the ability to learn wider temporal relation-
ships. Each layer in a TDNN operates at a different temporal
resolution, which increases as we go to higher layers of the net-
work.

Further, during back-propagation, the lower layers of the
network are updated by a gradient accumulated over all the time
steps of the input temporal context. Thus the lower layers of the
network are forced to learn translation invariant feature trans-
forms [2].
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Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the TDNN network are
the input contexts of each layer required to compute an output
activation, at one time step. A sample TDNN network is shown
in Figure 1. The figure shows the time steps at which activations
are computed, at each layer, and dependencies between activa-
tions across layers. It can be seen that the dependencies across
layers are localized in time. Layerwise context specification,
corresponding to this TDNN, is shown in column 2 of Table 1.

3.1. Sub-sampling

In a typical TDNN, hidden activations are computed at all time
steps. However there are large overlaps between input contexts
of of activations computed at neighboring time steps. Under the
assumption that neighboring activations are correlated, they can
be sub-sampled.

Our approach is, rather than splicing together contiguous

Table 1: Context specification of TDNN in Figure 1

Layer Input context Input context with sub-sampling
1 [−2,+2] [−2, 2]
2 [−1, 2] {−1, 2}
3 [−3, 3] {−3, 3}
4 [−7, 2] {−7, 2}
5 {0} {0}

temporal windows of frames at each layer, to allow gaps be-
tween the frames. In fact, in the hidden layers of the network,
we generally splice no more than two frames. For instance, the
notation {−7, 2} means we splice together the input at the cur-
rent frame minus 7 and the current frame plus 2. Figure 1 shows
this pictorially.

Empirically we found that what seems to work best is to
splice together increasingly wide context as we go to higher
layers of the network. The configuration in Figure 1, which is
fairly typical, splices together frames t− 2 through t+ 2 at the
input layer (which we could write as context {−2,−1, 0, 1, 2}
or more compactly as [−2, 2]); and then at three hidden layers
we splice frames at offsets {−1, 2}, {−3, 3} and {−7, 2}. Ta-
ble 1 tabulates these contexts (on the right), and compares with
a hypothetical setup without sub-sampling. The fact that the
differences between the offsets at the hidden layers were cho-
sen to all be multiples of 3 is not a coincidence. We designed it
this way in order to ensure that for each output frame, we need
to evaluate the smallest possible number of hidden layers. The
frames in red in Figure 1 are the ones we need to evaluate.

Sub-sampling at the middle of the network was also used in
stacked bottle-neck networks [14]. In this architecture bottle-
neck features were spliced across non-contiguous time steps
and used as an input to a second neural network. However the
bottle-neck network was not trained jointly with the final neural
network.

With the current sub-sampling scheme the overall necessary
computation is reduced during the forward pass and backprop-
agation, due to selective computation of time steps. Another
advantage of using sub-sampling is the reduction in the model
size. Splicing contiguous frames at hidden layers would require
us to either have a very large number of parameters, or reduce
the hidden-layer size significantly.

We use asymmetric input contexts, with more context to
the left, as this reduces the latency of the neural network in on-
line decoding, and also because this seems to be more optimal
from a WER perspective. Asymmetric context windows of up
to 16 frames in past and 9 frames in the future were explored
in this paper. It was observed that further extension of con-
text on either side was detrimental to word recognition accu-
racies, though the frame recognition accuracies improved (this
phenomenon is widely known).

A major difference in the current architecture compared to
[2] is the use of the p-norm nonlinearity [15], which is a di-
mension reducing non-linearity. p-norm units with group size
of 10 and p = 2 were used across all neural networks in our
experiments, based on the observations made in [15]. More re-
cent experiments in our TDNN framework show that that ReLU
nonlinearity may actually perform better in this context than p-
norm, but the full details were not ready in time for this paper.



3.2. Input Features

Mel-frequency cepstral coefficients (MFCCs) [16], without
cepstral truncation, were used as input to the neural network.
40 MFCCs were computed at each time step.

On each frame we append a 100-dimensional iVector [17]
to the 40-dimensional MFCC input. The MFCC input is not
subject to cepstral mean normalization; the intention is to al-
low the iVector to supply the information about any mean offset
of the speaker’s data, so the network itself can do any feature
normalization that is needed. In order for the mean-offset in-
formation to be encoded in the iVector, we estimate the iVector
on top of features that have not been mean-normalized. How-
ever, the Gaussian posteriors used for the iVector estimation are
based on features that have been mean normalized using a slid-
ing window of 6 seconds.

In order to ensure sufficient variety of the iVectors in the
training data, rather than estimating a separate iVector per
speaker we estimate them in an online fashion, where we only
use frames prior to the current frame, including previous utter-
ances of the same speaker. We re-set the utterance history every
two utterances, so that the iVectors still have some training-data
variety even when there are only a few speakers.

3.3. DNN training

The training recipe detailed in [15], with greedy layer-wise
supervised training, preconditioned stochastic gradient descent
(SGD) updates, exponential learning rate schedule and mixing-
up, was used. Parallel training of the DNNs using up to 18
GPUs was done, using the model averaging technique in [18].

3.3.1. Sequence training

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called
sMBR [19] . The training recipe mostly follows [20], although
it has been modified for the parallel-training method. Training
is run in parallel using 4 GPUs, while periodically averaging the
parameters, just as in the cross-entropy training phase.

In the sMBR objective function insertion errors are not pe-
nalized, which could lead to larger number of insertions when
decoding with sMBR trained acoustic models. Correcting this
asymmetry in the sMBR objective function, by penalizing in-
sertions, was shown to improve performance of sMBR models
by 10% WER, relative, in a far field recognition task [21]. This
modified objective function was used in this paper.

To compute the context-dependent state pseudo-likelihoods
from the posteriors estimated by the neural network, the poste-
riors are divided by a prior. We found that the method of using
the mean posterior (computed over a subset of the training data)
as the prior [22] gave an improved performance when decoding
with sMBR tuned models, so we used this method.

4. Experimental Setup
In Tables 2 and 3, we report results on 300 hour Switchboard
conversational telephone speech task. The GMM-HMM sys-
tems and the language models used for the Switchboard task are
similar to those described in [20]. The leaves of the phonetic de-
cision tree, used for the GMM-HMM system, correspond to the
output units of neural network acoustic models. Results using
the language models described in [20], are presented in Table 2.

4.1. Data augmentation and enhanced lexicon

In this paper we are interested in a single-pass decoding setup
which is suitable for the online speech recognition scenario.
Thus the use of speaker adaptive feature transform techniques
like fMLLR during test conditions is not viable. The use of data
augmentation techniques is to learn a network that is stable to
different perturbations of the data is desirable in this scenario.
In [23], speed perturbation of the training data was done to em-
ulate vocal tract length perturbations and speaking rate pertur-
bation. This was shown to provide 4.3% relative improvement
across several LVCSR tasks.

The iVector based TDNN system relies on the neural net-
work to learn the necessary normalization, based on mean
shifts captured in the iVector. However in well curated audio
databases there is low variance in audio volume, leading to low
variance in iVector w.r.t. mean shifts. Performing volume per-
turbation of the training data, where each recording in the train-
ing data was scaled with a random variable drawn from a uni-
form distribution over [ 1

8
, 2], emulates mean shifts in the MFCC

domain. It was observed that volume perturbation of the train-
ing data resulted in 1.5% relative improvement in WER across
test sets, compared with only speed perturbation.

These data augmentation techniques was adopted here.
Three copies of the training data corresponding to speed per-
turbations of 0.9, 1.0 and 1.1 were created. This data was then
volume perturbed.

In [24], the authors show that use of word pronunciation
probabilities, to distinguish multiple word pronunciations, is
beneficial. Further modeling the probability of silence before
and after each pronunciation explicitly was shown to provide
greater benefits. The lexicon updated with word pronunciation
probabilities and word position dependent silence probabilities
was used for decoding the test utterances.

Table 4: Baseline vs TDNN on various LVCSR tasks with dif-
ferent amount of training data

Database Size WER Rel.
DNN TDNN Change

Res. Management 3h hrs 2.27 2.30 -1.3
Wall Street Journal 80 hrs 6.57 6.22 5.3

Tedlium 118 hrs 19.3 17.9 7.2
Switchboard 300 hrs 15.5 14.0 9.6
Librispeech 960 hrs 5.19 4.83 6.9

Fisher English 1800 hrs 22.86 21.03 8.0

We present results on Switchboard subset as well as the
complete Hub5 ’00 evaluation set. Only the results in the SWB
column should be compared with the Hub5 00 results presented
in [26], [13] and [25].

5. Results
Table 2 compares different TDNNs and the baseline DNN. Each
neural network has 4 hidden layers with p-norm input dimen-
sion of 3000 and group size of 10.

From Table 2 comparing DNN-A and TDNN-A it can be
seen that even with standard temporal contexts TDNN systems
perform better than DNNs. A comparison of DNN-A, DNN-B
and TDNN-D shows that DNNs are not as effective as TDNNs
in processing wider temporal contexts.



Table 2: Performance comparison of DNN and TDNN with various temporal contexts

Model Network Context Layerwise Context WER
1 2 3 4 5 Total SWB

DNN-A [−7, 7] [−7, 7] {0} {0} {0} {0} 22.1 15.5
DNN-B [−13, 9] [−13, 9] {0} {0} {0} {0} 22.3 15.7
DNN-B [−16, 9] [−16, 9] {0} {0} {0} {0} 22.3 15.7

TDNN-A [−7, 7] [−2, 2] {−2, 2} {−3, 4} {0} {0} 21.2 14.6
TDNN-B [−9, 7] [−2, 2] {−2, 2} {−5, 3} {0} {0} 21.2 14.5
TDNN-C [−11, 7] [−2, 2] {−1, 1} {−2, 2} {−6, 2} {0} 20.9 14.2
TDNN-D [−13, 9] [−2, 2] {−1, 2} {−3, 4} {−7, 2} {0} 20.8 14.0
TDNN-E [−16, 9] [−2, 2] {−2, 2} {−5, 3} {−7, 2} {0} 20.9 14.2

Table 3: Results on SWBD LVCSR task with data augmentation and enhanced lexicon

Acoustic Model + Language Model WER
Total SWB

TDNN - D + pp 21.9 14.8
TDNN - D + pp + fg 20.4 13.6
TDNN - D + pp + fg + sp + vp 19.2 12.9
TDNN - D + pp + fg + sp + vp + silp 19.0 12.7
TDNN - D + pp + fg + sp + vp + sequence training 17.6 11.4
TDNN - D + pp + fg + sp + vp + sequence training + pa 17.1 11
unfolded RNN + fMLLR features + iVectors [13] - 12.7
unfolded RNN + fMLLR features + iVectors + sequence training [13] - 11.3
CNN/DNN joint training + fMLLR features + iVectors [25] - 12.1
CNN/DNN joint training + fMLLR features + iVectors [25] - 10.4

pp : pronunciation probabilities sp : speed perturbation
fg : 4-gram LM rescoring vp : volume perturbation
silp : word position dependent silence probabilities pa : prior adjustment

Comparing TDNNs A through E, [−13, 9] was found to be
the optimal temporal context. Though the number of parameters
between DNNs and TDNNs were not matched, each of these
systems was tuned for best performance. The best DNN system
had 7.5 million parameters and the best TDNN system had 9.0
million parameters.

A smaller TDNN with layer-wise contexts of TDNN-D was
built, as it would be suitable for online speech recognizers. The
size was reduced by decreasing p-norm input dimension from
3000 to 2750. This system has 7.7 million parameters This
model was trained on augmented data, it was discriminatively
trained and decoded using enhanced lexicon. It was able to
achieve a word error rate of 11.0%, which is better than the
result reported for unfolded recurrent networks in [13]. Table 3
shows the contributions of each technique.

5.1. Performance of TDNNs on various LVCSR tasks

Experiments were done using Kaldi speech recognition toolkit
[27] on Resource Management [28], Wall Street Journal [29],
Tedlium [30], Switchboard [7], Librispeech [31] and the english
portion of Fisher corpora [32]. The amount of training data
available for acoustic modeling varies from 3-1800 hours across
the setups mentioned. The recipes for these experiments are
available in the Kaldi code repository [27].

An average relative improvement 5.95% was observed over
the baseline DNN architecture through the use of TDNN archi-
tecture to process wider contexts. It is to be noted that the num-
ber of parameters in the system are not matched between DNN
and TDNN architectures. However the individual systems were
tuned for best performance, given the architecture.

In the Resource Management medium-vocabulary task, we
did not see gains from TDNNs. This could be due to the slight
increase in parameters in the TDNN architecture when process-
ing larger input contexts.

6. Conclusion
The effectiveness of TDNNs in processing wider context inputs
was shown in small and large data scenarios. An input temporal
context of [t−13, t+9] was found to be optimal. Further using
efficient selection of sub-sampling indices speed-ups of up to
∼ 5x were be obtained during training. An average relative im-
provement of 6% was reported across 6 different LVCSR tasks,
compared with our previous DNN configuration. Our results
are also 2.6% relative better than a previously reported result
from the literature using an unfolded RNN architecture operat-
ing on speaker adapted features [13]. Our future work involves
switching from the p-norm nonlinearity to ReLU, which accord-
ing to some preliminary experiments seems to work better in the
TDNN framework.
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