DIg deep Into INN

Zhiyuan Tang
2020.7.13

Question 1

Is Invertible neural network (INN) weak?

Residual vs. Coupling layer

Yid — X1:d
Yii1.p = Xd+1:D +M(X1.4)

Xa xb
@@ o0 T T
affin
xform
*
@@o@@@@@o ¥ WN I
L&

Xa Xp

*

y =z + F(z),

ResNet vs. INN

Figure 2: (a) the forward, and (b) the reverse computations of a residual block, as in Equation

y1 = x1 + F(x2)
Yo = T2 + G(y1)

The reversible residual network: Backpropagation without storing activations

http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations

ResNet vs. INN

Table 1: Computational and spatial complexity comparisons. L denotes the number of layers.

Spatial Complexity Computational

Technique (Activations) Complexity
Naive O(L) O(L)
Checkpointing O(L) O(L)
Recursive Checkpointing O(log L) O(Llog L)
Reversible Networks (Ours) O(1) O(L)

The reversible residual network: Backpropagation without storing activations

http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations

INN

(A) Invertible Layer

X y’l x| .’yrl
o> U , U’ e @+U" U [+@®
X x's Yo y X x5 y'a y
o——a

“(Q+—0
Forward Computation Reverse Computation

(B) Residual Block with Spatial Downsampling

QOutput Size | k x sx/d x sy/d k x sx/d x sy/d 2°f x sx x sy
dxd 3x3 dxd
- | Rel U b | ReLU - ! GLU
|Conv Conv 1Conv ®
Input Size f x sx x sy k x sx/d x sy/d k x sx/d x sy/d

Figure 2: Illustration of the layer used in this work. (A): Invertible layer with orthogonal 1 x 1
convolutional embedding. (B): Function G used in each invertible layer.

Invert to learn to invert

http://papers.nips.cc/paper/8336-invert-to-learn-to-invert

Zo Ti—1 }’%‘ T (1) Tjgy1 - TJ

Fi Fj+1 (I)ﬂL
To --- ij—l Sj ’fj S+ ;E.H—l .- Iy
Lo --- Tj—1 =YK W Tj+1 -

F; Fi+1
To -+ Tj1 Tjt1

It 1s widely believed that the success of deep convolutional networks 1s based on
progressively discarding uninformative variability about the input with respect to
the problem at hand. This 1s supported empirically by the difficulty of recovering
images from their hidden representations, in most commonly used network archi-
tectures. In this paper we show via a one-to-one mapping that this loss of infor-
mation is not a necessary condition to learn representations that generalize well
on complicated problems, such as ImageNet. Via a cascade of homeomorphic
layers, we build the 2-RevNet, a network that can be fully inverted up to the final
projection onto the classes, 1.e. no information is discarded. Building an invertible
architecture 1s difficult, for one, because the local inversion is ill-conditioned, we
overcome this by providing an explicit inverse. An analysis of i-RevNets learned
representations suggests an alternative explanation for the success of deep net-
works by a progressive contraction and linear separation with depth. To shed light
on the nature of the model learned by the :-RevNet we reconstruct linear interpo-
lations between natural image representations.

I-revnet. beep Invertinle Networks

https://arxiv.org/abs/1802.07088

Question 2

* Why Is flow’s performance weak?
* Some reason from

Understanding and mitigating exploding inverses in invertible neural networks

https://arxiv.org/abs/2006.09347

Exploding inverses

Original

Reconstruction

All the aforementioned applications rely on the assumption that the theoretical
invertibility of INNs carries through to their numerical instantiation. In this
work, we challenge this assumption by probing their inverse stability in
generative and discriminative modeling settings. As a motivating example, on
the left we show an image x from within the dequantization distribution of a
training example, and the reconstructed image F'—! (F'(z)) from a competitive
CelebA normalizing flow model F' [33]. In the same vein as exploding
gradients in RNNs, here the inverse mapping explodes, leading to severe
reconstruction errors up to Inf/NaN values. The model exhibits similar
failures both on out-of-distribution data and on samples from the model
distribution (discussed in Section 4.1). Interestingly, none of these failures are
immediately apparent during training. Hence, NFs can silently become non-
invertible, violating the assumption underlying their main advantages—exact
likelihood computation and efficient sampling [48].

Exploding inverses

—— Additve =~ Memory-saving gradient computation [22] is another popular application of
— Affine INNs where exploding inverses can be detrimental. On the left we show

‘%‘“TE‘ the angle between (1) gradients obtained from standard backprop and (2)
D 12 memory-efficient gradients obtained using the inverse mapping to recompute
B 08 activations, during training of additive- and affine-coupling INN classifiers on
= CIFAR-10. The affine model exhibits exploding inverses, leading to a rapidly
%&4 : increasing angle that becomes NaN after the dashed vertical line—making
c : memory-efficient training infeasible—whereas the additive model is stable.

10> 10° This highlights the importance of understanding the influence of different

Iteration INN architectures on stability. Different tasks may have different stability

requirements: NFs require the model to be invertible on training and test data,

and for many applications on out-of-distribution data. In contrast, memory-saving gradients only
require the model to be invertible on the training data, to reliably compute gradients.

Exploding inverses

The proof is given in Appendix B.1, together with upper bounds in Lemmas 5 and 6. Note that an
upper bound on Lip(F') provides a lower bound on Lip(F~!) and vice versa. These differences offer
two main insights. First, affine blocks can have arbitrarily large singular values in the inverse Jacobian,
i.e. an exploding inverse. Thus, they are more likely to become numerically non-invertible than
additive blocks. Second, controlling stability in each architecture requires fundamentally different
approaches since additive blocks have global bounds, while affine blocks are not globally bi-Lipschitz.
In addition to the Lipschitz bounds of coupling layers, we provide an overview of Lipschitz bounds of
other common INN building blocks in Table 2 (Appendix A). We cover coupling-based approaches,
free-form approaches like Neural ODEs [10] and i-ResNets [7]. Note that the bounds provide the
worst-case stability and are primarily meant to serve as a guideline for the design of invertible blocks.

Exploding inverses

3.3.2 Influence of the Normalizing Flow Loss on Stability

In addition to the INN architecture and local regularization such as bi-directional FD introduced in
Section 3.3.1, the training objective itself can impact local stability. Here, we examine the stabiliza-
tion effect of the commonly-used normalizing flow (NF) objective [48]. Consider a parametrized
diffeomorphism Fy : R? — R and a base distribution p. By a change-of-variables, we have:

log pg(x) = log pz(Fy(x)) + log |det Jp, (x)|, Vz € RY, (6)
where Jp, () denotes the Jacobian of Fj at x. The log-determinant in Eq. 6 can be expressed as:

d
log |det Jg, (z)]| = Z log (), (7
i=1

where o;(z) denotes the i-th singular value of Jg, (x). Thus, minimizing the negative log-likelihood
as ming — log py(z) involves minimizing the sum of the log singular values (Eq. 7). Due to the slope
of the logarithmic function log(z), very small singular values are avoided more strongly than large
singular values are favored. Thus, the inverse of Fjy is encouraged to be more stable than the forward
mapping. Furthermore when using Z ~ N (0, I) as the base distribution, we minimize:

—log pz(Fp(x)) o || Fy(2)ll3,

which bounds the ¢5-norm of the outputs of Fy. Due to this effect, large singular values are avoided
and the mapping Fp is further locally stabilized. Thus, the two terms of the normalizing flow objective
have complementary effects on stability: the log-determinant increases all singular values, but has
a stronger effect on small singular values than on large ones, improving inverse stability, while the
base term encourages the output of the function to have small magnitude, improving forward stability.
The effect of the NF objective, however, acts only on the training data z € R? and is thus not able to
globally stabilize INNs, as we show in our experiments (Section 4.1).

Exploding inverses

Gaussmn Texture tmyImageNet
e ey Dataset Glow ResFlow
5 CIFAR-10 (in-dist) 6.26e-5 2.86e-2
%ﬂ Uniform Inf 1.69e-2
Gaussian Inf 7.24e-3
o Rademacher Inf 1.90e-3
g SVHN [47] 5.51e-5 7.25e-2
= Texture [11] Inf 2.03e-2
2 Places [60] Inf 2.94e-2
§ tinylmageNet Inf 3.47e-2
(a4

Figure 2: Left: Reconstructions of OOD data, using a CIFAR-10 pre-trained Glow model. Broken
regions in the reconstructions are plotted in cyan. Right: Mean /5 reconstruction errors on in-
distribution (CIFAR-10) and out-of-distribution data, for a pre-trained Glow and Residual Flow.

Exploding inverses

10731
1074
1073
107

10_7;

¢5 Recons. Error

108 4

— Affine

— mod. Affine

— Resflow

0 50

100

150

Attack Iteration

200

Reconstruction during attack

Figure 4: Non-invertibility within the data-distribution of CelebA64 revealed by an invertibility
attack. Left: /5-reconstruction error obtained by the attack. The reconstructions of both affine
models explode to NaN (indicated by x), while the Residual Flow remains stable. Right: Despite no
visual differences between the original and perturbed image, reconstruction fails for the affine model.

Exploding inverses

Unregularized Regularized
y
—— Forward Mapping
—— Inverse Mapping
e Original Data
Targets X

¢ Reconstructions

Figure 5: Visualization of an exploding inverse on a 2D regression task. A Glow model is trained
to map between two 2D Gaussian distributions (1, z2) — (y1,y2), where y- has low variance, so
that we are essentially mapping from 2D space onto a 1D subspace. Left: An unregularized model
suffers from exploding inverses, illustrated by the points that are mapped far outside the original data
distribution by the inverse mapping. Right: Regularizing the model by adding the normalizing flow
objective with a small coefficient (1e-8) stabilizes the mapping.

