Crossmodal clustered contrastive learning: Grounding of spoken language to gesture

Ruihai Hou 2021/12/15

Crossmodal grounding

Self-supervised clustering

Fig. 3. Our proposed approach of self-supervised clustering in the output space of gestures, then utilizing the constructed clusters to sample negative and positives for the Crossmodal Cluster NCE loss to learn a gesture-aware language embedding space.

Threshhold

iterate through the data and find the mean μ̂ and standard deviation σ̂ of the pairwise dot-product similarity (referred to as *Sim*) of two arbitrary sequences of gestures. This metric is updated using a moving average continuously.

Batch Clustering

- Arbitrarily chosen anchor pose sequence y_a^b
- other pose sequences in the batch y^b[~ L] calculate similar score
- pose sequences whose similarity score greater than the threshold $(Sim(y_a^b, y^b[\sim L]) \ge \hat{\mu} + \hat{\sigma})$

assign to a batch-wise cluster

```
Algorithm 1 Recursive Batch Clustering
  -z^b: is the encoded audio and language representation
  - y^b: corresponding ground truth pose
  - L = torch.zeroes(|B|): vector to check if clustered
  - Batch_D = dict(): dictionary for batch-wise clusters
  -\hat{\mu}, \hat{\sigma}: mean and std. dev for similarity scores
  - Sim: Similarity Function
  -C^{b} batch-wise cluster index
  a = rand(|B|)
  C^b = 0
  while L not all True do
     C^{b} = C^{b} + 1
    L[a] = True
     y_a^b = y^b[a]
     for idx, score in enumerate(Sim(y_a^b, y^b[\sim L])) do
       if score \geq \hat{\mu} + \hat{\sigma} then
          Batch_D[C^b] append (y^b[idx], z^b[idx])
          L[idx] = True
       end if
     end for
     dissimseq, idx = TopK(sim, 1, largest = False)
     a = idx
  end while
  return Batch<sub>D</sub>
```

Global Clustering

- sample sequence y_{samp}^{b} from the batch cluster
- sample sequences y_{samp}^{g} from each of global clusters
- check whether y^b_{samp} belongs in an existing cluster in global clusters using $sim(y^b_{samp}, y^g_{samp}) \ge \hat{\mu} + \hat{\sigma}$.
- exceed the threshold, merge the batch cluster to the global cluster, else create a new global cluster

Algorithm 2 Global Clustering

- $Batch_D$: dictionary for batch-wise clusters
- $Global_D$: dictionary for global clusters
- C^{g} : global cluster index
- $\hat{\mu}, \hat{\sigma}$: mean and std. dev for similarity scores
- Sim: Similarity Function

 y_{samp}^{g} = sample a pose sequence per cluster from $Global_D$ for *i*, *values* in $Batch_D$ do

 $y_i^b, z_i^b = values$ (contains aligned poses & embeddings) $y_{samp}^b = sample a single sequence from <math>y_{clus}^b$ for *idx*, *score* in enumerate($Sim(y_{samp}^b, y_{samp}^g)$) do if *score* $\geq \hat{\mu} + \hat{\sigma}$ then $Global_D[idx]$ append (y_{clus}^b, z_{clus}^b)

```
else
```

$$C_g = C_g + 1$$

$$Global_D[C_g + 1] = (y^b_{clus}, z^b_{clus})$$

end if

end for

end for

return $Global_D$

Crossmodal Cluster NCE

 $y_i^+, z_i^+ = argmax \ (Sim(y_{cg}^g, y_i^b)), \forall [y_{cg}^g, z_{cg}^g] \in Global_D).$

 $z_i^- = [Global_D \setminus z_i^+]$

$$L_{cc-nce} = -\mathbb{E}_z \left[\log \frac{\exp(F(z)^T F(z_c^+))}{\exp(F(z)^T F(z_c^+)) + \exp(F(z)^T F(z_c^-))} \right]$$

Experimental Results

Fig. 4. Generated keypoints superimposed on ground truth images for easy comparison. The usage of contrastive learning produces gestures closer to the ground truth (L_{MoCo} , $L_{patchwise}$, Ours)

Experimental Results

Model	FID↓					
Speaker:	maher	bee	lec_cosmic	oliver	colbert	Mean
Ours	48.52 ± 5.39	$ 100.03 \pm 20.74$	44.43 ± 9.71	54.06 ± 9.38	5.85 ± 0.84	50.58 ± 7.15
Without L_{cc-nce} [1]	21.38 ± 3.89	65.67 ± 11.35	$\begin{array}{ }\textbf{23.14} \pm \textbf{11.03}\end{array}$	$ 46.48 \pm 1.12$	6.77 ± 0.05	32.69 ± 3.90
L_{cc-nce} replaced by L_{MoCo} [19]	32.15 ± 20.83	74.892 ± 24.17	27.38 ± 16.71	48.78 ± 2.13	6.57 ± 0.16	39.66 ± 12.38
L_{cc-nce} replaced by $L_{patchwise}$ [33]	26.45 ± 3.74	70.23 ± 10.52	38.95 ± 4.02	49.47 ± 9.47	$ 5.48 \pm 0.85$	33.30 ± 3.74

Table 2. Ablation of various contrastive loss mechanisms for 5 speakers in PATS in the task of generation of gestures in terms of coverage (FID). *Ours* utilizes the proposed L_{cc-nce} loss, whereas *Without* L_{cc-nce} utilizes no contrastive learning at all, as proposed in [1]. L_{cc-nce} is replaced by two other contrastive learning mechanisms L_{MoCo} [19] and $L_{patchwise}$ [33] for comparison.

• CC-NCE produces better L1 scores than other baselines

Conclusion

 Crossmodal Cluster NCE loss can guide the latent space to learn the similarities and dissimilarities in the constructed clusters in the gesture domain