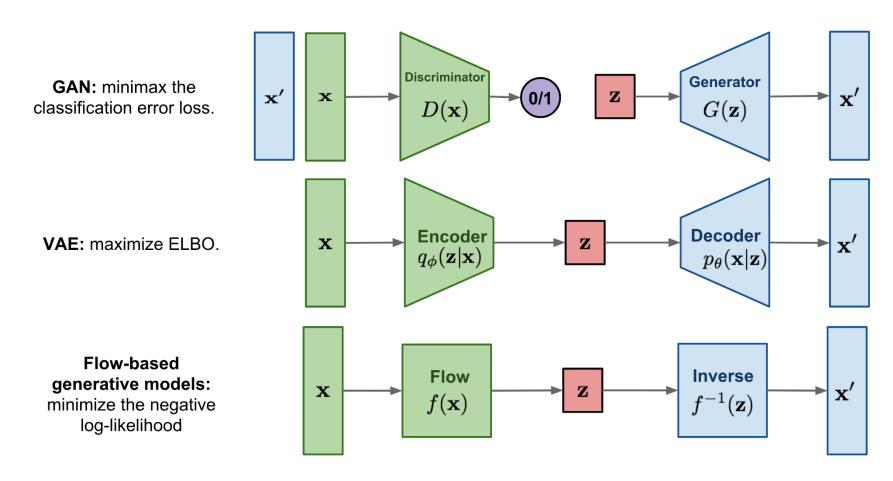
Wheels for Flow Model

Zhiyuan Tang 2020.4.8

Flow model

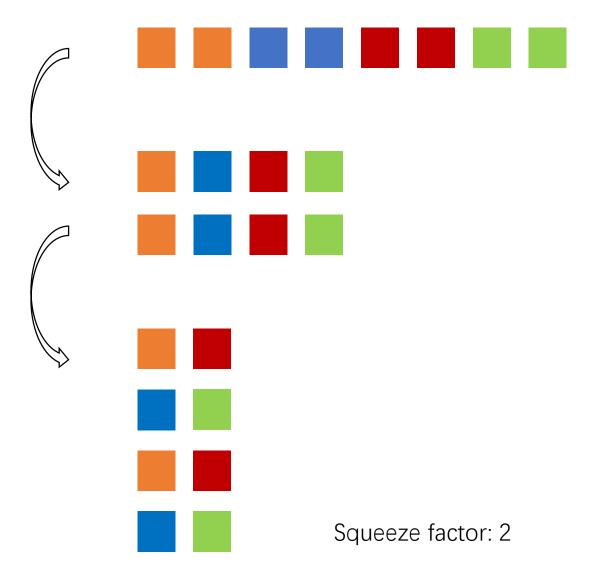


Wheels for Flow

For practice:

- Easily invertible
- Easily computation of Jacobian determinant

Squeezer



Additive/affine coupling layer

$$egin{cases} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} + m(\mathbf{x}_{1:d}) \end{cases} \Leftrightarrow egin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \ \mathbf{x}_{d+1:D} &= \mathbf{y}_{d+1:D} - m(\mathbf{y}_{1:d}) \end{cases}$$

$$\begin{cases} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \\ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp(s(\mathbf{x}_{1:d})) + t(\mathbf{x}_{1:d}) \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_{1:d} &= \mathbf{y}_{1:d} \\ \mathbf{x}_{d+1:D} &= (\mathbf{y}_{d+1:D} - t(\mathbf{y}_{1:d})) \odot \exp(-s(\mathbf{y}_{1:d})) \end{cases}$$

Invertible convolution

Table 1: The three main components of our proposed flow, their reverses, and their log-determinants. Here, \mathbf{x} signifies the input of the layer, and \mathbf{y} signifies its output. Both \mathbf{x} and \mathbf{y} are tensors of shape $[h \times w \times c]$ with spatial dimensions (h, w) and channel dimension c. With (i, j) we denote spatial indices into tensors \mathbf{x} and \mathbf{y} . The function NN() is a nonlinear mapping, such as a (shallow) convolutional neural network like in ResNets (He et al., 2016) and RealNVP (Dinh et al., 2016).

Description	Function	Reverse Function	Log-determinant
Actnorm. See Section 3.1.	$\mid \ orall i, j: \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b}$	$\forall i, j : \mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$	$\left \begin{array}{c} h \cdot w \cdot \mathtt{sum}(\log \mathbf{s}) \end{array}\right $
Invertible 1×1 convolution. $\mathbf{W} : [c \times c]$. See Section 3.2.	$orall i, j: \mathbf{y}_{i,j} = \mathbf{W} \mathbf{x}_{i,j}$	$\forall i, j : \mathbf{x}_{i,j} = \mathbf{W}^{-1} \mathbf{y}_{i,j}$	
Affine coupling layer. See Section 3.3 and (Dinh et al., 2014)	$egin{aligned} \mathbf{x}_a, \mathbf{x}_b &= \mathtt{split}(\mathbf{x}) \ (\log \mathbf{s}, \mathbf{t}) &= \mathtt{NN}(\mathbf{x}_b) \ \mathbf{s} &= \exp(\log \mathbf{s}) \ \mathbf{y}_a &= \mathbf{s} \odot \mathbf{x}_a + \mathbf{t} \ \mathbf{y}_b &= \mathbf{x}_b \ \mathbf{y} &= \mathtt{concat}(\mathbf{y}_a, \mathbf{y}_b) \end{aligned}$	$egin{aligned} \mathbf{y}_a, \mathbf{y}_b &= \mathtt{split}(\mathbf{y}) \ (\log \mathbf{s}, \mathbf{t}) &= \mathtt{NN}(\mathbf{y}_b) \ \mathbf{s} &= \exp(\log \mathbf{s}) \ \mathbf{x}_a &= (\mathbf{y}_a - \mathbf{t})/\mathbf{s} \ \mathbf{x}_b &= \mathbf{y}_b \ \mathbf{x} &= \mathtt{concat}(\mathbf{x}_a, \mathbf{x}_b) \end{aligned}$	$ \operatorname{sum}(\log(\mathbf{s})) $

Masked Autoregressive Flow (MAF)

$$x_i = u_i \exp \alpha_i + \mu_i$$
 where $\mu_i = f_{\mu_i}(\mathbf{x}_{1:i-1}), \quad \alpha_i = f_{\alpha_i}(\mathbf{x}_{1:i-1})$ and $u_i \sim \mathcal{N}(0, 1)$. (3)

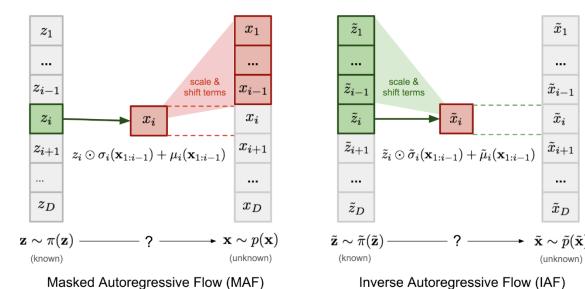
$$u_i = (x_i - \mu_i) \exp(-\alpha_i)$$
 where $\mu_i = f_{\mu_i}(\mathbf{x}_{1:i-1})$ and $\alpha_i = f_{\alpha_i}(\mathbf{x}_{1:i-1})$. (4)

$$\left| \det \left(\frac{\partial f^{-1}}{\partial \mathbf{x}} \right) \right| = \exp \left(-\sum_{i} \alpha_{i} \right) \quad \text{where} \quad \alpha_{i} = f_{\alpha_{i}}(\mathbf{x}_{1:i-1}). \tag{5}$$

Inverse Autoregressive Flow (IAF)

$$x_i = u_i \exp \alpha_i + \mu_i$$
 where $\mu_i = f_{\mu_i}(\mathbf{u}_{1:i-1})$ and $\alpha_i = f_{\alpha_i}(\mathbf{u}_{1:i-1})$.

MAF vs. IAF



Both MAF and IAF can be seen as more flexible (but different) generalizations of **coupling layer** which can both generate data and estimate densities with one forward pass only.

	Base distribution	Target distribution	Model	Data generation	Density estimation
MAF	$\mathbf{z} \sim \pi(\mathbf{z})$	$\mathbf{x} \sim p(\mathbf{x})$	$x_i = z_i \odot \sigma_i(\mathbf{x}_{1:i-1}) + \mu_i(\mathbf{x}_{1:i-1})$	Sequential; slow	One pass; fast
IAF	$ ilde{\mathbf{z}} \sim ilde{\pi}(ilde{\mathbf{z}})$	$ ilde{\mathbf{x}} \sim ilde{p}(ilde{\mathbf{x}})$	$ ilde{x}_i = ilde{z}_i \odot ilde{\sigma}_i(ilde{\mathbf{z}}_{1:i-1}) + ilde{\mu}_i(ilde{\mathbf{z}}_{1:i-1})$	One pass; fast	Sequential; slow

MAF vs. IAF

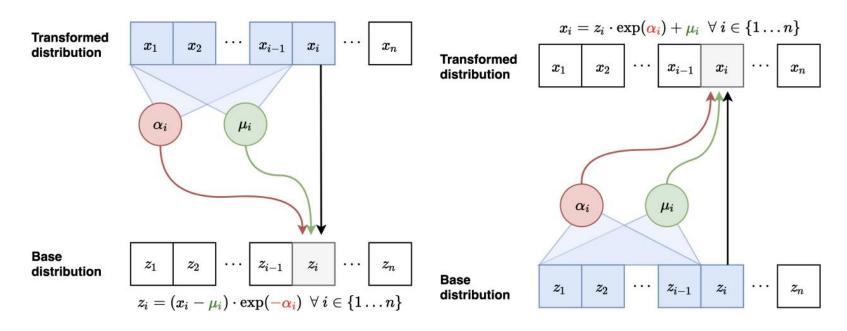


Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Invertible ResNet

Theorem (sufficient condition for invertible residual layer):

Let $F_{\theta}^t(x) = x + g_{\theta}^t(x)$ be a residual layer, then it is invertible if

$$\operatorname{Lip}(g_{\theta}^t) < 1$$

where

$$||g(x) - g(y)||_2 \le \text{Lip}(g)||x - y||_2$$

How to build i-ResNets

Satisfy Lip-condition: data-independent upper bound

$$g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi$$

$$Lip(g) \le ||W_3||_2 \cdot ||W_2||_2 \cdot ||W_1||_2$$

Spectral normalization (Miyato et al. 2018, Gouk et al. 2018)

$$\tilde{W} = c \frac{W}{\hat{\sigma}_1}, \quad 0 < c < 1$$

 $\hat{\sigma_1}$ approx of largest singular value via power-iteration

```
def invertible_residual_block(self):
    layers = []
    layers.append(nn.ReLU)
    layers.append(spectral_norm(nn.Linear(in_dim, hidden_dim)))
    layers.append(nn.ReLU)
    layers.append(spectral_norm(nn.Linear(hidden_dim, in_dim)))
```

Invertible ResNet

Invertible Residual Networks

Method	ResNet	NICE/ i-RevNet	Real-NVP	Glow	FFJORD	i-ResNet
Free-form	1	Х	Х	Х	✓	✓
Analytic Forward	✓	✓	✓	✓	X	✓
Analytic Inverse	N/A	✓	✓	X	X	×
Non-volume Preserving	N/A	×	✓	✓	✓	✓
Exact Likelihood	N/A	✓	✓	✓	X	×
Unbiased Stochastic Log-Det Estimator	N/A	N/A	N/A	N/A	✓	X

Table 1. Comparing i-ResNet and ResNets to NICE (Dinh et al., 2014), Real-NVP (Dinh et al., 2017), Glow (Kingma & Dhariwal, 2018) and FFJORD (Grathwohl et al., 2019). Non-volume preserving refers to the ability to allow for contraction and expansions and exact likelihood to compute the change of variables (3) exactly. The unbiased estimator refers to a stochastic approximation of the log-determinant, see section 3.2.

Latent prior

$$p_{\boldsymbol{\theta}}(\mathbf{z}) = \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\mathbf{z}_t | \mathbf{z}_{< t})$$

$$p(x_1,\ldots,x_n)=p(x_1)p(x_2\mid x_1)p(x_3\mid x_1,x_2)\cdots p(x_n\mid x_1,\cdots,x_{n-1})$$