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Neural-based speaker embedding
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Properties

e A canonical classification framework
e Softmax + Cross-entropy

* Pros
* Optimal for discriminating speakers in the training set.
e Optimal for the close-set ASV task.

* Cons
* Not guaranteed on unseen speakers.
* Not optimal for the open-set ASV task.



Metric learning for open-set ASV
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Properties

* A canonical metric learning framework
* Intra-speaker distance < Inter-speaker distance

* Pros
* Local difference instead of global discrimination
e Optimal for the open-set ASV task.

* Cons
* Combinatorial explosion for pairs/triplets.

* Difficult for model training, e.g., local optimum or non-
convergence.



Modified softmax training

* Motivation
e Softmax: simple form and easy training.

e Softmax does not explicitly encourage inter-speaker
separability and intra-speaker compactness.
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* Produced embeddings are not generalizable to unseen
speakers.



Distribution regularization
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Margin-based softmax

e Softmax
wT @,
e
- N Zlog C’ wl e,
J 1 €7
* Modified Softmax
1 68 cosé)yi
Lyus =~ Z:log E et Iwill = x|l = 1
* Margin-based Softmax
es-@[;(ﬁy?

LL]\fS——_Zlog Sqr/;(ﬁy )+Z sk scosE)j
J=1,771



Margin-based softmax

* Involving a fixed margin region in the target logit.

Decision Boundary
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Original Softmax Additive Margin Softmax
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 m1: angular softmax (A-Softmax)
 m2: additive angular margin softmax (AAM-Softmax)

* m3: additive margin softmax (AM-Softmax)



Additive margin softmax

* It aims to involve a margin factor m to enlarge the
margin between target logits and non-target logits.
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* Intuitively, it will pay more attention on target logits
than non-target logits, and separates target and
non-target classes. 5



m does not boost margin
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e Setting s =1 and m =0, it recovers the modified
Softmax...

* m only changes the loss landscape, but not enlarges
the margin between the target and non-target logits.



For easy samples
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* When m increases from 0, the contribution of easy
samples will be emphasized.
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For hard samples
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 Setting any m will not change the optimum.



A brief summary

 Setting a large m can boost the contribution of easy
samples, while is invalid to hard samples.

* This is more like a center loss which shrinks intra-
speaker distribution rather than a true margin loss.

* This is not a good property as hard samples are
always more concerning !

* This may overfit to easy samples and lead to bad
generalization capability (inferior performance on
open-set ASV).



Real additive margin softmax
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* Max-margin training
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Real additive margin softmax

e Real AM-Softmax
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* If the target logit is larger than non-target logits by
more than m, the exponential term will be zero,
otherwise a positive loss will be incurred.

* This will encourage the model to focus on hard
non-target logits, and forget easy non-targets that
have been well separated.



Real additive margin softmax
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e This can will balance the contribution of all classes,
which arguably alleviates the discrepancy between
softmax training and the open-set ASV task.

* This can be regarded as a graft of softmax training
and metric learning.



Experiments

* Data
* VVoxCeleb: VoxCeleb2.dev, VoxCelebl, VoxCeleb1-H/E
* SITW: SITW.Dev.Core, SITW.Eval.Core
* CNCeleb: CNCeleb.Train, CNCeleb.Eval

* Setting
e X-vector architecture
* ResNet34 topology
 Temporal statistical pooling strategy



Results on VoxCelebl and SITW

Table 1. EER(%) results on VoxCelebl and SITW.

Objective Hyperparameters VoxCelebl VoxCelebl-H VoxCelebl-E = SITW.Dev.Core  SITW.Eval.Core
AM-Softmax m = 0.20, s =30 1.739 2.895 1.724 2.811 3.362
Real AM-Softmax m=0.20,s =30 1.872 3.068 1.883 3.466 3.718
m=0.25,s =30 1.819 2914 1.781 3.350 3.554
m = 0.30, s =30 1.755 2.812 1.696 3.003 3.417
m = (.35, s =30 [.808 2.888 1.747 2.849 3.335

* m was chosen according to the development sets.

* This improvement is not very remarkable but
consistent, demonstrating that the real margin is a
correct modification.



Results on ‘Hard trials’

Table 2. EER(%) results on ‘hard trials’ selected from VoxCeleb and SITW with two objective functions.

Objective Hyperparameters VoxCelebl-H.H VoxCelebl-E.H SITW.Eval.Core.H
AM-Softmax m = 0.20, s = 30 39.794 38.970 36.082
ARM-Softmax m=0.20, s =30 40.729 40.416 40.206

m=0.25,s=30 39.899 37.814 35.052

m = 0.30, s = 30 39.175 36.861 36.082

m = 0.35, s =30 39.794 36.821 32.990

* RAM-Softmax is significantly superior on ‘hard
trials’.

* This indicates that RAM-Softmax is more robust
under more challenging test conditions.



Results on CNCeleb

Table 2. EER(%) results on CNCeleb.

Objective Hyperparameters CNCeleb.Eval
AM-Softmax m=0.10, s =30 11.450
Real AM-Softmax m=0.10,s =230 11.618

m=0.15,s =30 11.323

m = 0.20, s = 30 11.049

m = 0.25,s =30 11.422

* Again, RAM-Softmax outperforms AM-Softmax on
this more challenging dataset.



Conclusions

* We analyze that AM-Softmax loss cannot conduct
real margin training. It is more like a center loss
rather than a true margin loss.

* RAM-Softmax is a graft of angular softmax training
and max-margin metric learning, and can improve
the generalization capability on open-set tasks.

* RAM-Softmax obtains marginal but consistent
performance improvement on normal test
conditions, while obtains notably performance
improvement on complicated test conditions.



