# Real Additive Margin Softmax for Speaker Verification

Lantian Li

2021.10.25

# Neural-based speaker embedding



- (a). D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, "X-vectors: Robust DNN embeddings for speaker recognition," in ICASSP. IEEE, 2018.
- (b). E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez, "Deep neural networks for small footprint text-dependent speaker verification," in ICASSP. IEEE, 2014.

#### Properties

- A canonical classification framework
  - Softmax + Cross-entropy

- Pros
  - Optimal for discriminating speakers in the training set.
  - Optimal for the close-set ASV task.
- Cons
  - Not guaranteed on unseen speakers.
  - Not optimal for the open-set ASV task.

# Metric learning for open-set ASV



- (a) Logistic regression in cosine similarity
- (b) Triplet loss in cosine similarity
- (a). G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, "End-to-end text-dependent speaker verification," in ICASSP. IEEE, 2016, pp. 5115–5119.
- (b). C. Zhang and K. Koishida, "End-to-end text-independent speaker verification with triplet loss on short utterances," in INTERSPEECH, Stockholm, Sweden, 2017.

#### Properties

- A canonical metric learning framework
  - Intra-speaker distance < Inter-speaker distance</li>

#### Pros

- Local difference instead of global discrimination
- Optimal for the open-set ASV task.

#### Cons

- Combinatorial explosion for pairs/triplets.
- Difficult for model training, e.g., local optimum or nonconvergence.

# Modified softmax training

#### Motivation

- Softmax: simple form and easy training.
- Softmax does not explicitly encourage inter-speaker separability and intra-speaker compactness.



Produced embeddings are not generalizable to unseen speakers.

#### Distribution regularization

Center loss

$$\mathcal{L}_C = rac{1}{2} \sum_{i=1}^m \| m{x}_i - m{c}_{y_i} \|_2^2$$

VAE



• DNF/NDA



### Margin-based softmax

Softmax

$$L_S = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\boldsymbol{w}_{y_i}^T \boldsymbol{x}_i}}{\sum_{j=1}^{C} e^{\boldsymbol{w}_j^T \boldsymbol{x}_i}}$$

Modified Softmax

$$L_{MS} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cos \theta_{y_i}}}{\sum_{j=1}^{C} e^{s \cos \theta_j}} \qquad ||w_j|| = ||x_i|| = 1$$

Margin-based Softmax

$$L_{LMS} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cdot \psi(\theta_{y_i})}}{e^{s \cdot \psi(\theta_{y_i})} + \sum_{j=1, j \neq i}^{C} e^{s \cdot \cos \theta_j}}$$

### Margin-based softmax

Involving a fixed margin region in the target logit.



$$\psi(\theta_{y_i}) = \cos(m_1 \theta_{y_i} + m_2) - m_3$$

- m1: angular softmax (A-Softmax)
- m2: additive angular margin softmax (AAM-Softmax)
- m3: additive margin softmax (AM-Softmax)

# Additive margin softmax

 It aims to involve a margin factor m to enlarge the margin between target logits and non-target logits.

$$\mathcal{L}_{\text{AM-Softmax}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i,i}) - m)}}{e^{s(\cos(\theta_{y_i,i}) - m)} + \sum_{j \neq y_i} e^{s(\cos(\theta_{j,i}))}}$$

 Intuitively, it will pay more attention on target logits than non-target logits, and separates target and non-target classes.

#### m does not boost margin

$$\mathcal{L}_{\text{AM-Softmax}} = \frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_{i},i})-m)} + \sum_{j \neq y_{i}} e^{s(\cos(\theta_{j,i}))}}{e^{s(\cos(\theta_{y_{i},i})-m)}}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \log \left\{ 1 + \sum_{j \neq y_{i}} e^{-s(\cos(\theta_{y_{i},i})-\cos(\theta_{j,i})-m)} \right\}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \log \left\{ 1 + e^{sm} \sum_{j \neq y_{i}} e^{-s(\cos(\theta_{y_{i},i})-\cos(\theta_{j,i}))} \right\}$$

- Setting s = 1 and m = 0, it recovers the modified Softmax...
- m only changes the loss landscape, but not enlarges the margin between the target and non-target logits.

### For easy samples

$$\frac{e^{(\cos(\theta_{y_i,i})-m)}}{e^{(\cos(\theta_{y_i,i})-m)} + \sum_{j \neq y_i} e^{(\cos(\theta_{j,i}))}} \approx 1$$

$$\log\left\{1 + e^m \sum_{j \neq y_i} e^{-(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}))}\right\}$$

$$\approx e^m \sum_{j \neq y_i} e^{-(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}))}$$

• When *m* increases from 0, the contribution of easy samples will be emphasized.

# For hard samples

$$\frac{e^{(\cos(\theta_{y_i,i})-m)}}{e^{(\cos(\theta_{y_i,i})-m)} + \sum_{j \neq y_i} e^{s(\cos(\theta_{j,i}))}} \ll 1$$

$$\log\left\{1 + e^m \sum_{j \neq y_i} e^{-(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}))}\right\}$$

$$\approx \qquad \left[m + \log \sum_{j \neq y_i} e^{-(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}))}\right]$$

Setting any m will not change the optimum.

# A brief summary

- Setting a large *m* can boost the contribution of easy samples, while is invalid to hard samples.
- This is more like a center loss which shrinks intraspeaker distribution rather than a true margin loss.
- This is not a good property as hard samples are always more concerning!
- This may overfit to easy samples and lead to bad generalization capability (inferior performance on open-set ASV).

### Real additive margin softmax

AM-Softmax

$$\mathcal{L}_{\text{AM-Softmax}} = \frac{1}{N} \sum_{i=1}^{N} \log \left\{ 1 + \sum_{j \neq y_i} e^{-s(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}) - m)} \right\}$$

Max-margin training

$$\mathcal{L}_{\text{margin}} = \boxed{\max} 0, d_p - d_n + m)$$

Real AM-Softmax

$$\mathcal{L}_{\text{RAM-Softmax}} = \frac{1}{N} \sum_{i=1}^{N} \log \left\{ 1 + \sum_{j \neq y_i} e^{\max\{0, -s(\cos(\theta_{y_i, i}) - \cos(\theta_{j, i}) - m)\}} \right\}$$

#### Real additive margin softmax

Real AM-Softmax

$$\mathcal{L}_{\text{RAM-Softmax}} = \frac{1}{N} \sum_{i=1}^{N} \log \left\{ 1 + \sum_{j \neq y_i} \left\{ \max\{0, -s(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}) - m)\} \right\} \right\}$$

- If the target logit is larger than non-target logits by more than m, the exponential term will be zero, otherwise a positive loss will be incurred.
- This will encourage the model to focus on hard non-target logits, and forget easy non-targets that have been well separated.

#### Real additive margin softmax

Real AM-Softmax

$$\mathcal{L}_{\text{RAM-Softmax}} = \frac{1}{N} \sum_{i=1}^{N} \log \left\{ 1 + \sum_{j \neq y_i} \left\{ \max\{0, -s(\cos(\theta_{y_i,i}) - \cos(\theta_{j,i}) - m)\} \right\} \right\}$$

- This can will balance the contribution of all classes, which arguably alleviates the discrepancy between softmax training and the open-set ASV task.
- This can be regarded as a graft of softmax training and metric learning.

#### Experiments

#### Data

- VoxCeleb: VoxCeleb2.dev, VoxCeleb1, VoxCeleb1-H/E
- SITW: SITW.Dev.Core, SITW.Eval.Core
- CNCeleb: CNCeleb.Train, CNCeleb.Eval

#### Setting

- X-vector architecture
- ResNet34 topology
- Temporal statistical pooling strategy

#### Results on VoxCeleb1 and SITW

**Table 1**. EER(%) results on VoxCeleb1 and SITW.

| Objective       | Hyperparameters    | VoxCeleb1 | VoxCeleb1-H | VoxCeleb1-E | SITW.Dev.Core | SITW.Eval.Core |
|-----------------|--------------------|-----------|-------------|-------------|---------------|----------------|
| AM-Softmax      | m = 0.20, s = 30   | 1.739     | 2.895       | 1.724       | 2.811         | 3.362          |
| Real AM-Softmax | m = 0.20, s = 30   | 1.872     | 3.068       | 1.883       | 3.466         | 3.718          |
|                 | m = 0.25, s = 30   | 1.819     | 2.914       | 1.781       | 3.350         | 3.554          |
|                 | m = 0.30, s = 30   | 1.755     | 2.812       | 1.696       | 3.003         | 3.417          |
|                 | m = 0.35, $s = 30$ | 1.808     | 2.888       | 1.747       | 2.849         | 3.335          |

- m was chosen according to the development sets.
- This improvement is not very remarkable but consistent, demonstrating that the real margin is a correct modification.

#### Results on 'Hard trials'

**Table 2**. EER(%) results on 'hard trials' selected from VoxCeleb and SITW with two objective functions.

| Objective   | Hyperparameters    | VoxCeleb1-H.H | VoxCeleb1-E.H | SITW.Eval.Core.H |
|-------------|--------------------|---------------|---------------|------------------|
| AM-Softmax  | m = 0.20, s = 30   | 39.794        | 38.970        | 36.082           |
| ARM-Softmax | m = 0.20, s = 30   | 40.729        | 40.416        | 40.206           |
|             | m = 0.25, $s = 30$ | 39.899        | 37.814        | 35.052           |
|             | m = 0.30, s = 30   | 39.175        | 36.861        | 36.082           |
|             | m = 0.35, $s = 30$ | 39.794        | 36.821        | 32.990           |

- RAM-Softmax is significantly superior on 'hard trials'.
- This indicates that RAM-Softmax is more robust under more challenging test conditions.

#### Results on CNCeleb

**Table 2**. EER(%) results on CNCeleb.

| Objective       | Hyperparameters                                                              | CNCeleb.Eval                                |  |
|-----------------|------------------------------------------------------------------------------|---------------------------------------------|--|
| AM-Softmax      | m = 0.10, s = 30                                                             | 11.450                                      |  |
| Real AM-Softmax | m = 0.10, s = 30<br>m = 0.15, s = 30<br>m = 0.20, s = 30<br>m = 0.25, s = 30 | 11.618<br>11.323<br><b>11.049</b><br>11.422 |  |

 Again, RAM-Softmax outperforms AM-Softmax on this more challenging dataset.

#### Conclusions

- We analyze that AM-Softmax loss cannot conduct real margin training. It is more like a center loss rather than a true margin loss.
- RAM-Softmax is a graft of angular softmax training and max-margin metric learning, and can improve the generalization capability on open-set tasks.
- RAM-Softmax obtains marginal but consistent performance improvement on normal test conditions, while obtains notably performance improvement on complicated test conditions.