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The ML criterion

 Maximum likelihood the data, with a supposed model
* VVery good principle



Difficulties with hidden variable

* Gaussian mixture model
 An EM algorithm, by computing posterior of hidden
* An energy idea: Helmholtz free energy
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Difficulties with hidden variable

* How if the posterior not possible?
* Sampling by Markov chain
* Variational lower-bound by simple function (mean field)
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Helmholtz Machine & wake-sleep method

* Variational by complex function
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Figure 3: A Helmholtz Machine.
A simple three layer Helmholtz machine modelling the activity of 5 binary inputs
(layer 1) using a two stage hierarchical model. Generative weights (0) are shown
as dashed lines, including the generative biases, the only such input to the units
in the top layer. Recognition weights (¢) are shown with solid lines. Recognition
and generative activation functions are described in the text.
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Connected to AE/VAE and flow

* Maximum likelihood with two path



s ML sufficient?

* Seems not, in particular with a compact assumption like Gaussian

* More criterion is important for particular tasks, e.g., maximum
mutual information, high-order decorrelation, minimum entropy, no-
gaussianlity...

* Pons and Pros for Gaussian assumption



