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Text categorization

* Classify texts to pre-defined categories.

* No category learning.
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Difficulties in highly restricted TC

* We can afford a very small set of keywords

 We need the best keywords to reserve the
performance

 We need online decision (not resolved yet)



Keyword selection in TC (1)

 Keyword selection based on intermediate
scores: Gini index, information Gain, mutual
information, X2 test, class discriminating
measure (CDM), weight of evidence for text,
odds ratio, expected cross entropy, DF, TF...



Keyword selection in TC (2)
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Keyword selection in TC (3)

» Keyword selection based on keyword/non-
keyword classification
— Word position, POS tag, DF ...
— SVM, MLP, NB



Keyword selection in TC (4)

* Joint dimension selection and classifier
optimization. For example, keep only
prominent dimensions by checking the
regression coefficients in a linear model.

* Evolution approach, e.g., ant colony
optimization.

* Graph based keyword selection, e.g., the rank
method



Keyword selection in TC (5)

Dimension reduction by linear transform. E.g.,
DA, SVD, NMF

Dimension reduction by semantic
representation. E.g., LSI, PLSA, LDA




Sparse analysis

* |nvolving L1 generally leads to sparse solutions
for both regression and classification models.

 We want to employ sparse analysis to select
the prominent dimensions.
— Joint optimization for keyword selection and
model training

— The optimization function is more related to the
task goal (TC).



From LDA to SDA

* LDA can be cast to an optimization problem as
follows(optimal score criterion)
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* |nvolving L1 leads to the sparse version of LDA.
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For two-class problems
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From SVM to sparse SVM

T
Yp = W Ty + b

||2 s.T. Itnyn>' I — gn

T gﬂ,



Experiments

e Simulation by text!

e Data profile

— 1000 Uyghur documents. 500 health, 500 non-
health

— 70% for training, 10% for dev, 20% for evaluation
* Text pre-processing

— Character purging

— Latinization

— Stop words removal



Latinization
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Reference system: Textrank
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Reference system: Textrank




Reference system: document statistics

CA%
n 20 | 40 | 60 | 80 | 100
DFy, 88.0 | 87.5 | 83.5 | 89.5 | 89.0
TFy, 90.5 | 92.5 | 89.5 | 89.5 | 90.0
TFy, = DFy, 91.0 | 91.5 | 92.5 | 90.0 | 93.0
TFy+ DFpx IDFp., | 93.0 ] 92.5 | 90.0 | 90.5 | 92.5

CA%
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DF;, — DF, 91.0 | 93.5 1 91.5 | 93.5 | 92.0
TF, —TF, 93.5 19251 90.0 | 92.5 | 92.0
TFy,« DF, —TF, * DF, 91.5 ] 91.0 1 95.0 | 94.0 | 91.5
TFy,+* DFy«IDFy, ., —TF,« DF, « IDF} ., | 90.5 | 90.5 | 89.5 | 91.0 | 94.0




CA%

Sparse systems
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Extracted keywords
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Conclusions

 Keyword selection based on sparse analysis is
theoretically sound and experimentally works
well.

e Sparse SVM obtains better performance than
SDA with very limited keywords

e How about in real ASR and with online
decision?




