

C-P MAP: A Novel Evaluation Toolkit for Speaker Verification

Lantian Li

CSLT @ THU 2022.3.14

Backbones

ResNet

Fig. 1: Three types of residual blocks.

Fig. 2: Detailed designs inside ResNeXt and Res2Net blocks..

Pooling strategies

TSP

$$\mathbf{m} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{h}_t$$

$$\mathbf{d} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \mathbf{h}_t \odot \mathbf{h}_t - \mathbf{m} \odot \mathbf{m}}$$

Figure 2: Attentive statistics pooling

Frame-level features h_t

T frames

Angular margin loss

Score normalization

Impressive performance

• VoxSRC 2020

Track	Rank	Team Name	Organization	minDCF	EER
	-	Baseline	Provided		7.68
1	3	ntorgashov [15]	ID R&D Inc., New York, USA	0.203	3.82
1	2	xx205 [16]	AISpeech Ltd, China	0.196	3.81
	1	JTBD [17]	IDLab, Ghent University, Belgium	0.177	3.73
	-	Baseline	Provided	0.477	7.68
2	3	DKU-DukeECE [18]	Duke Kunshan University, China & Duke University, USA	0.205	3.88
2	2	xx205 [16]	AISpeech Ltd, China	0.194	3.80
	1	JTBD [17]	IDLab, Ghent University, Belgium	0.174	3.58
	-	Baseline	Provided	0.877	19.07
2	3	umair.khan [19]	TALP Research Center, UPC, Spain	0.751	14.71
3	2	DKU-DukeECE [18]	Duke Kunshan University, China & Duke University, USA	0.598	12.42
	1	JTBD [17]	IDLab, Ghent University, Belgium	0.345	7.21

Impressive performance

VoxSRC 2021

Track 1

#	User	Entries	Date of Last Entry	DCF ▲	EER ▲
1	snowstar	5	09/02/21	0.1034 (1)	1.8460 (1)
2	yugi	4	09/02/21	0.1175 (2)	2.8400 (3)
3	JTBD	5	09/02/21	0.1291 (3)	2.2710 (2)

Track 2

#	User	Entries	Date of Last Entry	DCF 📥	EER 📤
1	snowstar	5	09/02/21	0.1034 (1)	1.8460 (1)
2	yugi	4	09/02/21	0.1175 (2)	2.8400 (5)
3	JTBD	5	09/01/21	0.1313 (3)	2.0490 (2)

Benchmark vs. Deployment

ICS 03.060 A11

中华人民共和国金融行业标准

JR/T 0164-2018

5.1 基本性能指标

基本性能指标应满足以下要求:

- ——错误接受率(FAR)≤0.5%。
- ——错误拒绝率 (FRR) ≤3.0%。

移动金融基于声纹识别的安全应用 技术规范

Technical specifications for voiceprint recognition based security application for mobile finance

Deployment Performance

EER > 5.0%

• Benchmark-deployment Gap!

To interpret and settle this gap

- **Data theme**: hypothesizing that the performance gap is largely attributed to *acoustic mismatch*.
 - HI-MIA: Near-far filed mismatch
 - NIST SRE: Long-short mismatch, channel mismatch
 - VoxCeleb: Session mismatch
 - CN-Celeb: Genre mismatch

•

Topology	Pooling	Loss	SITW	CN-Celeb.E
TDNN	TSP	Softmax	2.43	16.87
TDNN	TSP	AAM-Softmax	2.49	16.65
TDNN	SAP	Softmax	2.41	17.11
TDNN	SAP	AAM-Softmax	2.57	16.96
ResNet-34	TSP	Softmax	2.41	16.74
ResNet-34	TSP	AAM-Softmax	1.96	16.51
ResNet-34	SAP	Softmax	2.16	17.33
ResNet-34	SAP	AAM-Softmax	2.30	16.52

To interpret and settle this gap

Trials theme

- Each trial is an individual test case.
- We argue that there is the bias on evaluation trials, leading to the benchmark-deployment gap.

Cross-pairing trials design

- For example, cross-pairing design produces a larger proportion of *easy* trials, leading to over optimistic performance estimation.
- Target trials: NK(K-1) vs. Negative trials: N(N-1)K^2

Cross-pairing vs. Real-life

- Cross-pairing trials
 - There is a large proportion of *easy* trials, particularly the cases for negative trials.
 - More negative trials than positive trials.

Real-life trials

- The negative trials more challenging as the imposters often with the same acoustic condition, such as gender, accent, language.
- More positive trials than negative trials.

Trial bias issue

- (a) shows the scores of trials created by cross-pairing.
- (b) shows the scores of trials encountered in real-life.

The distribution difference reflects the bias on trials.

Concept of Trial config

• Given a set of enrollment/test utterances, a trial config is defined as a subset of trials selected to test against an ASV system.

 The full cross-pairing is the largest trial config and involves all the possible trials.

• For an ASV system, performance with different trial configs are different, reflecting real performance under different deployment conditions.

Config-performance map

 By collecting all possible trial configs and computing the corresponding performance, we can evaluate the ASV system in a more thorough way.

- The process of C-P map
 - x-axis corresponds to subsets of positive trials.
 - y-axis corresponds to subsets of negative trials.
 - each location (x; y) on the map corresponds to a particular trial config.
 - The color at (x; y) represents the performance.

Take an example

- Score-ordered trial configs
 - Target trials sets (x-axis): trials with higher scores from left to right. [hard to easy]
 - Non-target trials sets (y-axis): trials with lower scores from bottom to up. [hard to easy]

• The color in the map represents the EER values corresponding to each trial config.

C-P map of the i-vector system

Observations

 The large proportion of high-performance area reveals that there are larger amount of easy trials.

• Two trial configs (red star and green star) represents the real-life deployment and the crosspairing benchmark.

 It is clear that the two trial configs lead to quite different EER results, which is precisely the benchmark-deployment gap.

The value of C-P map

 If the order of the trial configs are fixed, the C-P map is more useful.

- System analysis and comparison
 - Create ordered trial configs by fusing several basic systems.
 - With these trial configs, we can plot C-P maps for an ASV systems to obtain detailed analysis.
 - Moreover, we can plot the relative change between two systems for system comparison.

Basic systems

- Data
 - Training set: *VoxCeleb2.dev*
 - Evaluation set: VoxCeleb1-O and VoxCeleb1-E

- Basic system
 - i-vector and x-vector
- More powerful systems
 - ResNet34, Attentive pooling, AM-Softmax

System performance

Table 1: EER(%) and minDCF results with the modern ASV systems on VoxCeleb1 evaluation trials.

System	Front-End	Back-End	VoxCe EER(%)	leb1-O minDCF	VoxCo EER(%)	eleb1-E minDCF
1	GMM i-vector	PLDA	5.819	0.5189	5.872	0.5038
2	TDNN + TSP + Softmax	PLDA	4.558	0.4882	4.290	0.4343
3	TDNN + TSP + AM-Softmax	Cosine	3.430	0.3370	3.389	0.3619
4	ResNet34 + TSP + AM-Softmax	Cosine	1.633	0.1770	1.688	0.1900
5	ResNet34 + TSP + AAM-Softmax	Cosine	1.803	0.1961	1.747	0.1946
6	ResNet34 + ASP + AM-Softmax	Cosine	1.521	0.1642	1.504	0.1669

Sys 1 and Sys 2 are used to produce trial configs.

C-P maps with EER metric

Figure 4: The C-P maps of 6 systems tested on VoxCeleb-E trials with *EER* metric.

C-P maps with minDCF metric

Figure 5: The C-P maps of 6 systems tested on VoxCeleb-E trials with *minDCF* metric.

Delta C-P map

• The relative change ratio (RCR) at location (x,y) on two C-P maps.

$$RCR(x,y) = \frac{CP_{ref}(x,y) - CP_{test}(x,y)}{CP_{ref}(x,y)},$$

- If RCR > 0, it means the test system wins. If RCR < 0, it means the test system loses. If RCR = 0, they are tied.
- Win: Tie: Lose

i-vector vs. x-vector

RCR with minDCF

 The discriminative model is superior to the probabilistic model.

Softmax vs. AM-Softmax

(a) AM-Softmax against Softmax (EER)

Win: Tie: Lose = 98.68%: 1.32%: 0.00%

(b) AM-Softmax against Softmax (minDCF)

 The margin-based AM-Softmax overwhelmingly outperforms the standard Softmax.

TDNN vs. ResNet34

Win: Tie: Lose = 100.00%: 0.00%: 0.00%

(b) ResNet34 against TDNN (minDCF)

• It demonstrates the great success of ResNet34 in speaker recognition.

AAM-Softmax against AM-Softmax

(a) AAM-Softmax against AM-Softmax (EER)

Win: Tie: Lose = 35.64%: 0.04%: 64.32%

(b) AAM-Softmax against AM-Softmax (minDCF)

• The performance gap is quite marginal.

TSP vs. ASP

(a) ASP against TSP (EER)

Win: Tie: Lose = 99.88%: 0.12%: 0.00%

(b) ASP against TSP (minDCF)

• ASP outperforms TSP on the whole.

Roadmap

Figure 11: The roadmap of speaker recognition techniques measured by C-P map and delta C-P map.

Conclusions

- This paper is inspired by the benchmarkdeployment discrepancy.
- We hypothesize that this problem is attributed to the potential trial bias issue.
- To verify our hypothesis, we define the concept of trial config and its derived C-P map.
- We show that this C-P map is a novel evaluation tool for ASV system analysis and comparison.

Let us discuss one thing

 Are the performance measurements shown at different locations on the C-P map comparable?

$$\int_{-\infty}^{\theta} p(c) dc = \int_{\theta}^{+\infty} q(c) dc$$

 The evaluation measurement (e.g., EER) are determined by distributions of scores of trials rather than trials themselves.