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ASV in deep learning era
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(b) ResNeXt block.

(c) Res2Net block.

Fig. 1: Three types of residual blocks.
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(a) ResNeXt module (cardinality = 4).

Fig. 2: Detailed designs inside ResNeXt and Res2Net blocks..
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(b) Res2Net module (scale = 4).
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ASV in deep learni
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ASV in deep learning era

* Angular margin loss
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ASV in deep learning era

e Score normalization
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Impressive performance

* VoxSRC 2020

Track Rank Team Name Organization minDCF EER
- Baseline Provided 0.477 7.68

1 3 ntorgashov [15] ID R&D Inc., New York, USA 0.203 3.82
2 xx205 [16] AlSpeech Ltd, China 0.196 3.81

1 JTBD [17] IDLab, Ghent University, Belgium 0.177 3.73

- Baseline Provided 0.477 7.68

) 3 DKU-DukeECE [18] Duke Kunshan University, China & Duke University, USA 0.205 3.88
2 xx205 [16] AlSpeech Ltd, China 0.194 3.80

1 JTBD [17] IDLab, Ghent University, Belgium 0.174 3.58
- Baseline Provided 0.877 19.07

3 3 umair.khan [19] TALP Research Center, UPC, Spain 0.751 14.71
2 DKU-DukeECE [18] Duke Kunshan University, China & Duke University, USA 0.598 12.42

| JTBD [17] IDLab, Ghent University, Belgium 0.345 7.21




Impressive performance

* VoxSRC 2021

Track 1
e e s I
snowstar 09/02/21 0.1034 (1) 1.8460 (1)
2 yugi 4 09/02/21 0.1175 (2) 2.8400 (3)
3 JTBD 5 09/02/21 0.1291 3) 22710 ()
Track 2
DTN (C—
snowstar 09/02/21 0.1034 (1) 1.8460 (1)
2 yugi 4 09/02/21 0.1175 (2) 2.8400 (5)

3 JTBD 5 09/01/21 0.1313 (3) 2.0490 (2)




Benchmark vs. Deployment
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* Benchmark-deployment Gap !



To interpret and settle this gap

* Data theme: hypothesizing that the performance
gap is largely attributed to acoustic mismatch.
* HI-MIA: Near-far filed mismatch
NIST SRE: Long-short mismatch, channel mismatch
VoxCeleb: Session mismatch
CN-Celeb: Genre mismatch

Topology Pooling  Loss SITW  CN-Celeb.E
TDNN TSP Softmax 2.43 16.87
TDNN TSP AAM-Softmax| 2.49 16.65
TDNN SAP Softmax 2.41 17.11
TDNN SAP AAM-Softmax| 2.57 16.96
ResNet-34 TSP Softmax 2.41 16.74
ResNet-34 TSP AAM-Softmax| 1.96 16.51
ResNet-34 SAP Softmax 2.16 17.33
ResNet-34 SAP AAM-Softmax| 2.30 16.52




To interpret and settle this gap

e Trials theme
e Each trial is an individual test case.

 We argue that there is the bias on evaluation trials,
leading to the benchmark-deployment gap.



Cross-pairing trials design

* For example, cross-pairing design produces a larger
proportion of easy trials, leading to over optimistic
performance estimation.

* Target trials: NK(K-1) vs. Negative trials: N(N-1)KA2

Enroll Test
® ® (a)
81 .\ ® * : * ** *
e * X *** *x %
—00 r-|—OO
‘@

S2 |e/ e




Cross-pairing vs. Real-life

* Cross-pairing trials
* There is a large proportion of easy trials, particularly the
cases for negative trials.

* More negative trials than positive trials.

e Real-life trials

* The negative trials more challenging as the imposters
often with the same acoustic condition, such as gender,
accent, language.

* More positive trials than negative trials.



Trial bias issue

(a) shows the scores of trials created by cross-pairing.

(b) shows the scores of trials encountered in real-life.

(a)

 The distribution difference reflects the bias on trials.



Concept of Trial config

* Given a set of enrollment/test utterances, a trial
config is defined as a subset of trials selected to test
against an ASV system.

* The full cross-pairing is the largest trial config and
involves all the possible trials.

* For an ASV system, performance with different trial
configs are different, reflecting real performance
under different deployment conditions.



Config-performance map

By collecting all possible trial configs and
computing the corresponding performance, we can
evaluate the ASV system in a more thorough way.

* The process of C-P map
* X-axis corresponds to subsets of positive trials.
* y-axis corresponds to subsets of negative trials.

* each location (x; y) on the map corresponds to a
particular trial config.

* The color at (x; y) represents the performance.



Take an example

» Score-ordered trial configs

e Target trials sets (x-axis): trials with higher scores from
left to right. [hard to easy]

* Non-target trials sets (y-axis): trials with lower scores
from bottom to up. [hard to easy]

* The color in the map represents the EER values
corresponding to each trial config.



C-P map of the i-vector system
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* The large proportion of high-performance area
reveals that there are larger amount of easy trials.

* Two trial configs (red star and green star)
represents the real-life deployment and the cross-
pairing benchmark.

* It is clear that the two trial configs lead to quite
different EER results, which is precisely the
benchmark-deployment gap.



The value of C-P map
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* If the order of the trial configs are fixed, the C-P
map is more useful.

e System analysis and comparison
* Create ordered trial configs by fusing several basic
systems.

* With these trial configs, we can plot C-P maps for an
ASV systems to obtain detailed analysis.

* Moreover, we can plot the relative change between
two systems for system comparison.




Basic systems

* Data
* Training set: VoxCeleb2.dev
e Evaluation set: VoxCeleb1-O and VoxCeleb1-E

* Basic system
e i-vector and x-vector

* More powerful systems
* ResNet34, Attentive pooling, AM-Softmax



System performance

Table 1: EER(%) and minDCEF results with the modern ASV systems on VoxCelebl evaluation trials.

System  Front-End Back-End EEgﬁ;‘;?eleE]lil—]% CF EERY;K)CdiEiln-[]? CF
1 GMM i-vector PLDA 5.819 0.5189 5.872 0.5038
2 TDNN + TSP + Softmax PLDA 4.558 0.4882 4.290 0.4343
3 TDNN + TSP + AM-Softmax Cosine 3.430 (0.3370 3.389 0.3619
. ResNet34 + TSP + AM-Softmax Cosine 1.633 0.1770 1.688 0.1900
5 ResNet34 + TSP + AAM-Softmax  Cosine 1.803 0.1961 1.747 0.1946
6 ResNet34 + ASP + AM-Softmax Cosine 1.521 0.1642 1.504 0.1669

* Sys 1 and Sys 2 are used to produce trial configs.
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C-P maps with EER metric
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Figure 4: The C-P maps of 6 systems tested on VoxCeleb-E trials with EER metric.
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C-P maps with minDCF metric
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(b) System 2: TDNN + TSP + Softmax
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(c) System 3: TDNN + TSP + AM-Softmax
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Figure 5: The C-P maps of 6 systems tested on VoxCeleb-E trials with minDCF metric.



Delta C-P map

* The relative change ratio (RCR) at location (x,y) on
two C-P maps.

CP?‘ef (SB; y) - CPtest (SB; y)
CPres(,y)

RCR(z,y) =

-
/

* If RCR > 0, it means the test system wins. If RCR < O,
it means the test system loses. If RCR =0, they are
tied.

e Win: Tie: Lose
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I-vector vs. x-vector
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* The discriminative model is superior to the probabilistic
model.
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Percentage of the highest nontarget scores (%)
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Softmax vs. AM-Softmax
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(a) AM-Softmax against Softmax (EER) (b) AM-Softmax against Softmax (minDCF)

* The margin-based AM-Softmax overwhelmingly
outperforms the standard Softmax.

RCR with minDCF
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TDNN vs. ResNet34
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(a) ResNet34 against TDNN (EER) (b) ResNet34 against TDNN (minDCF)

* |t demonstrates the great success of ResNet34 in
speaker recognition.
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AAM-Softmax against AM-Softmax
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* The performance gap is quite marginal.
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TSP vs. ASP
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* ASP outperforms TSP on the whole.
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Roadmap

(1) GMDM i-vector (2) TDNN TSP Softmax (3) TDNN TSP AM-Softmax (4) ResNet TSP AM-Softmax (5) ResNet TSP AAM-Softmax (6) ResNet ASP AM-Softmax
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Figure 11: The roadmap of speaker recognition techniques measured by C-P map and delta C-P map.



Conclusions

* This paper is inspired by the benchmark-
deployment discrepancy.

* We hypothesize that this problem is attributed to
the potential trial bias issue.

* To verify our hypothesis, we define the concept of
trial config and its derived C-P map.

* We show that this C-P map is a novel evaluation
tool for ASV system analysis and comparison.



Let us discuss one thing

* Are the performance measurements shown at
different locations on the C-P map comparable?

* YES |

& 1 oo
/ p(c)de = f q(c)de
~ o 0

0

* The evaluation measurement (e.g., EER) are
determined by distributions of scores of trials
rather than trials themselves.



