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Discriminative model VS Generative Model

Discriminative model: Generative model:
» Feature extraction » Sampling

» Classifier » Inference



Sampling Method in Generative Model
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Sampling Method in Generative Model

Monte Carlo Markov Chain (MCMC): MC

Q: We have a probability density function(PDF) which 1s very complex. We want some sample point from such(PDF) to
analyze some statistical Characteristics. How to sample.

Monte Carlo (MC):

N
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q(x) is hard to compute: Accept & Reject k * g(x)



Sampling Method in Generative Model

Monte Carlo Markov Chain (MCMC): MC

Markov Chain (MC):

P(Xi41 =85

Xo = 8ip, X1 = 84y, , Xy = 8;) = P(Xy41 = 85| Xt = 8;), t: times; s:state

Pf.j = P(Xr+1 = 9j Xt = si).

lim 7P = 7°. 7O init state (Markov Chain should be aperiodic
f— p

w(2) P13, 1) ==(9)P(],3). Torolli,j
(1) Q(i, )a(i, j) = m(5)Q(4,%1)a(j,i) Inspired by Monte Carlo af(i,j) is accept & reject

if we want to do sample under a certain distribution, we just simulate the Markov process
with stable distribution, after enough steps(times) of transfer, our sample distribution will
be very close to the stable distribution

MCMC: M-H, Gibbs



Restricted Boltzmann machine

RBM
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Restricted Boltzmann machine

RBM

({(W,b,c) = i log Z exp( — E(T;(f) , h)) — nlog Z exp( — E(v, h))
t=1 h vh
0 = {b,c, W} Vyb(W,b,c)
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Restricted Boltzmann machine

RBM

Vol(W, b, c) = gEPwU“}] [vﬁ,( — B(v®, h))] — nEpq) [Vg ( — E(v, h))]

|
Z = ZZexp( ’u,,h))

Def: Gibbs Steps: k, samples per batch: t

for(i=0; i<k-+t; i++) Ep(h) {Va ( B h))} ~ Ve ( ~Bi{ad) ) v=0,h—h
p(v*i|h’)
p(hi*1[vitt) W =W+ -:1:( (v®)p®” (ﬁ)ﬁT)

samples {(v,h)<"!, (v,h)<*2, (v,h)+t; b=1b+ a(h(v ) — h(B)

c:::+e:u(vm —ﬁ)



Restricted Boltzmann machine
RBM




Implicit Generation with EBM
VoLmL = Ext~pp [VEEG(X+ )] — Ex-rg [VGEH (X_)] '
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Figure 1: Overview of our method and the
interrelationship of the components involved.
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Implicit Generation with EBM

Algorithm 1 Energy training algorithm
Input: data dist. pp (x), step size A, number of steps
K
B+ @
while not converged do
X" ~ pp
x? ~ B with 95% pmbability and U otherwise

for sample step k = 1 to K do
%F — % Vi EBE ) 4w, w ~
N(0,0)

end for

x; = Q)

> Optimize objective aL2 + Ly wrt 0: s _
A6 Voy X, a(Bo(x)” + Eo(x7)*) + mumeeell ]
Eo(x;") — Eo(x7) — :

Update 0 based on A¢ using Adam optimizer gure 2: Conditional ImageNet32x32 EBM samples

end while




Implicit Generation with EBM

sibiie SVHN/CIFAR-10 Test on Glow D_UWEE"'-"HN-"UF*’-R-N Test on PixelCNN++ SVHN/CIFAR-10 Test on EBM CIFAR-10 Tramﬂ'est on EBM
CIFAR-10 Test CIFAR-10 Test CIFAR-10 Test
. 5 0.0006 i
00003
0.0004
00002
0.0002
0.0001
D00 00~ 10000 ~3000 —B0DD 4000 2000 L DGG—QBDGG ﬁﬂf}ﬂl —41]00—2000 0 o —3 —2 -1 0 1 D'D_B = By o 1
Lag Prob Log Prob Log Prob (Unscaled) Log Prob (Unscaled)

Figure 11: Histogram of relative likelihoods for various datasets for Glow, Pixel CNN++ and EBM models
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Implicit Generation with EBM
4.4 Out-of-Distribution Generalization
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Such a task requires models to have high likelihood on the data manifold and low likelihood at all
other locations and can be viewed as a proxy of log likelihood. Surprisingly, [Nalisnick et al.|[2019]

'Ill O LITTOUU ULIC LI i "l*' . dllU LW OUETS, dI€ UlldDIC 1O U 41 Lidl

assign higher likelihood to many OOD images. We constructed our OOD metric following followmg
[Hendrycks and Gimpel, 2016] using Area Under the ROC Curve (AUROC) scores computed based
on classifying CIFAR-10 test images from other OOD images using relative log likelihoods. We use
SVHN, Textures [[Cimpoi et al.,2014], monochrome images, uniform noise and interpolations of
separate CIFAR-10 images as OOD distributions. We provide examples of OOD images in Figure 9]

We found that our proposed OOD metric correlated well with training progress in EBMs.

Model PixelCNN++ Glow EBM (ours)
SVHN 0.32 0.24 0.63
Tcxturcs SVHN Constant Uniform Textures 0.33 0.27 0.48
~ Constant Uniform 0.0 0.0 0.30
Uniform 1.0 1.0 1.0
e CIFAR10 Interpolation 0.71 0.59 0.70
Uniform CIFARI0 Mix CIFARIO Average 0.47 0.42 0.62
Figu:re 9: Tllustration of im- Figure 10: AUROC scores of out of distribution classification on differ-
ages from each of the out of ent datasets. Only our model gets better than chance classification.

distribution dataset.



Implicit Generation with EBM

Method Accuracy

EWC [Kirkpatrick et al., 2017|] 19.80 (0.05)
SI [Zenke e%r.'," 19.67 (0.09)
NAS [Schwarz et al., 2018] 19.52 (0.29)
LwF [Li and Snavely, 2018] 24.17 (0.33)
VAE 40.04 (1.31)
EBM (ours) 64.99 (4.27)

Table 1: Comparison of various continual learning
benchmarks. Values averaged acrossed 10 seeds reported
as mean (standard deviation).

label. Hsu et al.|[2018] analyzed common continual learning algorithms such as EWC [Kirkpatrick

et al. Zﬂlﬂ], SI [Zenke et al.|

2017) and NAS [

We find that EBMs also perform well in con-
tinual learning. We evaluate incremental class
learning on the Split MNIST task proposed
in [Farquhar and Gal} [2018]. The task evalu-
ates overall MNIST digit classification accuracy
given 5 sequential training tasks of disjoint pairs
of digits. We train a conditional EBM with 2 lay-
ers of 400 hidden units work and compare with
a generative conditional VAE baseline with both
encoder/decoder having 2 layers of 400 hidden
units. Additional training details are covered in
the appendix. We train the generative models
to represent the joint distribution of images and
labels and classify based off the lowest energy

Schwarz et al., 2018|| and find they obtain performance

around 20%. LwF [Liand S

navely

, 2018 performed the best with performance of 24.17 4 0.33 ,

where all architectures use 2 layers of 400 hidden units. However, since each new task introduces
two new MNIST digits, a test accuracy of around 20% indicates complete forgetting of previous
tasks. In contrast, we found continual EBM training obtains significantly higher performance of
64.99 4+ 4.27. All experiments were run with 10 seeds.



Maximum Entropy Generators for EBM
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Maximum Entropy Generators for EBM

To minimize the approximation error, p must be close to pg. To do so, we tune GG to minimize
the KL divergence K L(p¢||pe), which can be rewritten in terms of minimizing the energy of the
samples from the generator while maximizing the entropy at the output of the generator:

Le = —H|pg] +]Ez~szﬂ(G(z)) = 0
I(X,Z)=H(X)-H(X|Z)=H(G(2)) —W
106Y) = [ [ Pty Png?Y)

[/ p(x,mngpjﬂig) - [ [ Paxniogp)

= [ [ Peopixies Pv1X) - [ 10gPY) [ POXY)
= [ ) [ P10 PY1X) — [ 102 POYV)PY)

- /}; P(X)H(Y|X = z) + H(Y)
= H(Y) - H(Y|X)

Belghazi, 1., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., and Hjelm, R. D. Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062, ICML 2018, 2018.

Girolami, M. and Calderhead, B. Riemann manifold langevin and hamiltonian monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123-214,
2011.



Maximum Entropy Generators for EBM

. o [N
In particular, we use the estimator from |Hjelm et al.|(2018), which estimates the Jensen-Shannon
divergence between the joint distribution (p(x, z)) and the product of marginals (p(x)p(z)). We refer
to this information measure as [ ;s p(X, Z). We found that the JSD-based estimator works better in
practice than the KL-based estimator (which corresponds to the mutual information).

The estimator of Hjelm et al |(2018) is given by
Iisp(X,Z) = ;fllng(x,z)[—SP(—T(Xj Z))] = Epxypz) 8p(T(X, Z))] (7)
¢

*{:G = _IJ.S'D(G(Z)'.' Z) T EZNPZ EH(G(E))

Lg=Egp,Eg(x)—Eznp. Eg(G(2))

O0Ey (G (2t))
821

Next, the proposed Z;.1 is accepted or rejected using the Metropolis Hastings algorithm, by computing
the acceptance ratio:

+ ev2 x a, where e ~ N(0,1,)

zt+1 = Zf — (¥

- P(Ze41)9(2¢|Z¢41) (11)
p(2¢)q(Ze41|2¢)
L) — exp{ = Bo(Gulirsn)) + EolGu(zi)) (12)
t
—1 0Ee (G,
Q(it+1 |zt) 8 eXp (E”it"'l — Zy + o H(aZt(zt)) ||3) {13}

and accepting (setting z;41 = Z4+1) with probability r.



Maximum Entropy Generators for EBM

(a) (b) (c)

Figure 2 — Probability density visualizations for three popular toy dataset (a) 25-gaussians, (b) swiss
roll, and (c) 8-gaussians. Density was estimated using a sample based approximation of the partition
function.



Maximum Entropy Generators for EBM

To empirically verify MEG captures all the modes of the data distribution, we follow the same
experimental setup as (Metz et al., 2016) and (Srivastava et al., [2017). We train our generative
model on the StackedMNIST dataset, which is a synthetic dataqet created by stacking MNIST on
different channels. The number of modes are counted using a pretrained MNIST classifier, and

the KL divergence is calculated empirically between the generated mode distribution and the data
distribution.

Table 1 — Number of captured modes and Kullback-Leibler divergence between the training and
samples distributions for ALI (Dumoulin et al., 2016), Unrolled GAN (Metz et al., 2016), Vee-

GAN (Srivastava et all 2017), WGAN-GP (Gulrajani et al.l 2017). Numbers except MEG and
WGAN-GP are borrowed from Belghazi et al.

(Max 10%) Modes KL

4
Uniolled GAN 487  agz _owxll’) Modes KL
VEEGAN 1500 295 WGAN-GP 9538.0 0.9144

WGAN-GP 959.0 0.7276
MEG (ours) 1000.0 0.0313

MEG (ours)  10000.0  0.0480




Maximum Entropy Generators for EBM

Table 3 — Performance on the KDD99 dataset. Values for OC-SVM, DSEBM values were obtained
from Zong et al.| (2018). Values for MEG are derived from 5 runs. For each individual run, the

metrics are averaged over the last 10 epochs.

Model Precision Recall F1
Kernel PCA 0.8627 0.6319 0.7352
OC-SVM 0.7457 0.8523 0.7954
DSEBM-¢e 0.8619 0.6446 0.7399
DAGMM 0.9297 0.9442 0.9369

MEG (ours) | 0.9354 4 0.016 | 0.9521 + 0.014 | 0.9441 £ 0.015

Table 4 — Performance on the unsupervised anomaly detection task on MNIST measured by area
under precision recall curve. Numbers except ours are obtained from (Zenati et al.
MEQG are averaged over the last 10 epochs to account for the variance in scores.

2018). Results for

Heldout Digit | VAE MEG BiGAN-o
1 0.063 | 0.281 +£0.035 | 0.287 4 0.023
4 0.337 | 0.401 = 0.061 | 0.443 + 0.029
5 0.325 | 0.402 £ 0.062 | 0.514 £+ 0.029
7 0.148 | 0.29 £0.040 | 0.347 £+ 0.017
9 0.104 | 0.342 + 0.034 | 0.307 £+ 0.028




Flow & EBM
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Noise contrastive estimation (NCE) [[L5] can be used to learn the EBM, by including the normal-
izing constant as another learnable parameter. Specifically, for an energy-based model pgy(x) =

ﬁ exp|fo(x)], we define pg(z) = exp[fo(z) — ¢|, where ¢ = log Z(0). c is now treated as a free
parameter, and is included into . Suppose we observe training examples {x;,7 = 1,...,n}, and we

have generated examples {Z;,7 = 1, ..., n} from a noise distribution ¢(z). Then # can be estimated
by maximizing the following objective function:

. po(z) ()
10) = g [l0s — 24 ] 1, f1og 1@ ] @

which transforms estimation of EBM into a classification problem.

q(x) 1s a design issue 1. analytically tractable expression of normalized density
2. easy to draw sample from
3. close to data distribution

Flow Contrastive Estimation of Energy-Based Models



Flow & EBM
3.4 Semi-supervised learning

A class-conditional energy-based model can be transformed into a discriminative model in the
following sense. Suppose there are K categories &k = 1, ..., K, and the model learns a distinct density
pe, () for each k. The networks jgk{ ) for k =1, ..., K may share common lower layers, but with
different top layers. Let p;. be the prior probability of category k, for £ = 1, ..., K. Then the posterior
probability for classifying x to the category k is a softmax multi-class classifier

exp(fo, (&) + bi) -

Plklz) = ]
L > ie1 exp(fa, () + br)

where b, = log(pr) — log Z(04).

Llabe] (H) = Epdata{:c,y} [lﬂgpg(y|T, Yy € {11 seey I{})]
po, (z) ] (17)
Sp oo (z)]’

= Bpsaca(z,p) !108;

which i1s similar to a classifier in the form.

For unlabeled examples, the probability can be defined by an unconditional EBM, which is in the
form of a mixture model:

pe(z) Zpa(:cly k)p(y = k) KZPEJR (18)

i=1



Pa(x) o (X)
) /_
i’ r"'\ \
s i 3 % <
..F
3’*. ;
2 :nlazna H \
Pa, (x) Pe, (x) Pa, (x) Pa,(x) P, (x) Pa, (%)
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Figure 5: Illustration of FCE for semi-supervised learning on a 2D example, where the data dis-
tribution is two spirals belonging to two categories. Within each panel, the top left is the learned
unconditional EBM. The top right is the learned Glow model. The bottom are two class-conditional
EBMs. For observed data, seven labeled points are provided for each category.



Paper:

Training restricted boltzmann machines using approximations to the likelihood gradient (RBM)
Bayesian learning via stochastic gradient langevin dynamics (langevin dynamics)

Implicit Generation and Modeling with Energy-Based Models

A tutorial on energy-based learning

Learning deep representations by mutual information estimation and maximization (JSD)
Maximum Entropy Generators for Energy-Based Models

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models (NCE)

Flow Contrastive Estimation of Energy-Based Models

Code:

https://github.com/ritheshkumar95/energy based generative models



