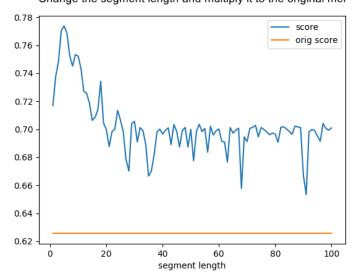
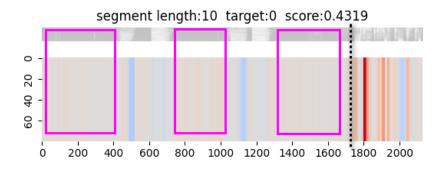
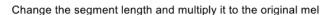

How do deep speaker models treat silence and noises

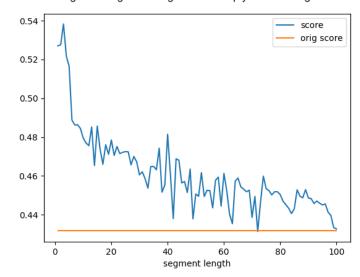
王天昊 2022/10/14


Background

• time masking


multi-speaker(a-b-a, a is target)

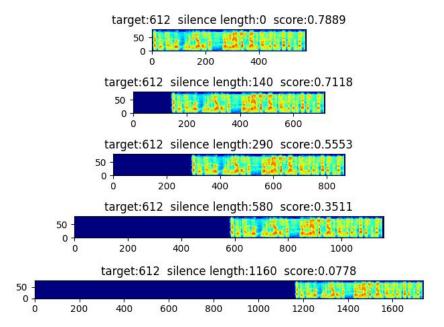

Change the segment length and multiply it to the original mel



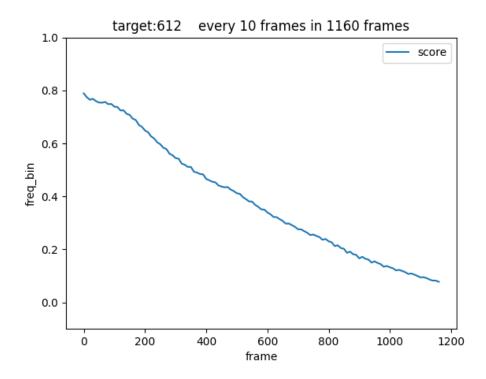
noise with silence splicing speaker's voice

Why the silence segment also gets a positive weight?

Experiment


- Score based
- Concatenate special audio to speaker's voice
 - special audio:
 - silence
 - white noise
 - music
 - variable:
 - concatenation length
- Tips:
 - *torchaudio.load()* will enable normalize by default (converts the native sample type to float32, set 'normalize=False' to disabled it).
 - scipy.io.wavfile.read() will keep the sample type of the original file.

Silence

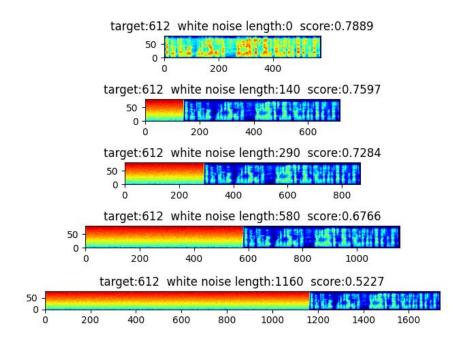

Concatenate absolute silence with the speaker's waveform.

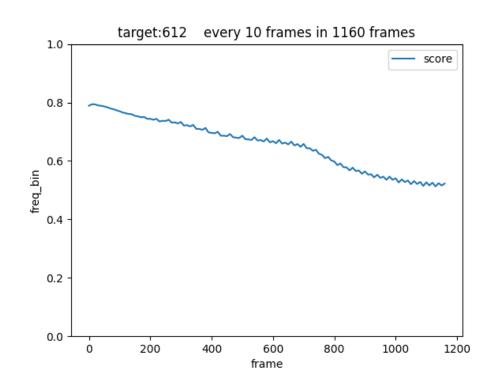
0 speaker's waveform

- Continue to increase the concatenation length, and calculate the score curve
- use ResNet34 TSP model:

ASP model results are similar to TSP.

Silence


• IDR


• DataSet: 2000 utterances from VoxCeleb2, including 100 speakers

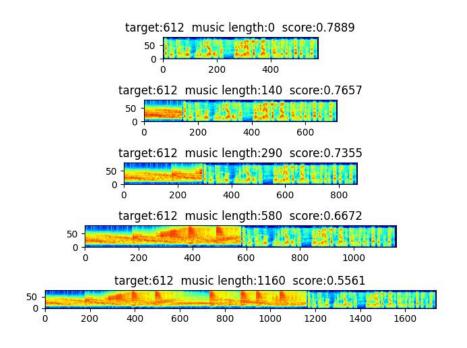
	TSP model IDR	ASP model IDR
original	98.35%	98.20%
concatenate 1/4 length silence	95.70%	94.10%
concatenate 1/2 length silence	55.50%	44.00%
concatenate same length silence	3.15%	0.40%

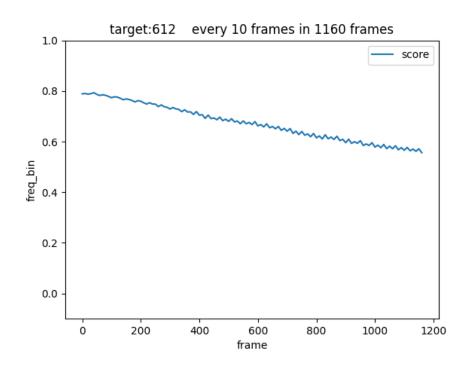
White Noise

- Concatenate white noise's waveform with the speaker's waveform.
- use ResNet34 TSP model:

ASP model results are similar to TSP.

White Noise


• IDR


• DataSet: 2000 utterances from VoxCeleb2, including 100 speakers

	TSP model IDR	ASP model IDR
original	98.35%	98.20%
concatenate 1/4 length white noise	96.80%	96.35%
concatenate 1/2 length white noise	87.80%	89.30%
concatenate same length white noise	59.10%	73.50%

Music

- Music DataSet: 5 music selected from the musan dataset
- use ResNet34 TSP model:

- ASP model results are similar to TSP.
- When the concatenation length is relatively long, the difference between the scores of different music is about 0.1.

Music

• IDR

• DataSet: 2000 utterances from VoxCeleb2, including 100 speakers

	TSP model IDR	ASP model IDR
original	98.35%	98.20%
concatenate 1/4 length music	98.15%	97.80%
concatenate 1/2 length music	97.15%	97.25%
concatenate same length music	93.10%	93.90%

Music

Other style music

	TSP model IDR	ASP model IDR
original	98.35%	98.20%
concatenate 1/4 length music	97.65%	97.50%
concatenate 1/2 length music	93.35%	93.85%
concatenate same length music	75.65%	80.20%

Conclusion

- Influence on model's recognition ability: silence > white noise > music.
- The influence of silence on both the TSP model and the ASP model is very large.
- The ASP model can reduce the influence of white noise and music on the model compared to the TSP model.

More

• Why does silence affect the model so much?