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Introduction(1/5) 
 LDA 

 relies on the co-occurrences of surface words to capture 
their semantic relations. 

 

 In reality, a surface word is likely to be highly 
associated to more than one topic and presents 
different word senses in different topics.  
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Introduction(2/5) 
 Robot 

 S#1:machine robot 

 S#2:film robot 

  In LDA  
 Two topics: electronics technology , film.  

 LDA considers the surface word 'robot‘ to be identical in both 
contexts and leverages on its co-occurrences with other words 
in the context to differentiate those two topics..  

 With word sense information 

 a document with context of word sense S#1 is expected to 
earn more probability mass for topic T#1 and less 
probability mass for topic T#2,  
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Introduction(3/5) 
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Introduction(4/5) 
 Incorporate the word sense information in the 

LDA generative story and construct a joint model 
to infer word senses for words and topics for 
documents simultaneously.  

 

 Our model is completely unsupervised and is able 
to work with external resources minimized.  
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Introduction(5/5) 
 HDP for word sense induction 

 Two models are proposed in this paper:  

 Standalone SLDA(SA-SLDA)  

 word sense induction and document representation as 
standalone modules;  

 Collaborative SLDA(CO-SLDA)  

 takes the topics of senses from SLDA as the pseudo feedback 
for Word Sense Induction (WSI) and iteratively infers both 
topics and word senses.  
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Related work(1/2) 
 Semantic Document Representation Models 

 VSM 
 Ignore sematic relations. 

 Explicit Sematic Representation 
 The lexical ontologies are difficult to construct and can hardly be 

complete.  

 Latent Sematic Representation(Topic model) 
 Those models treat word as surface string.  
 One word may contain different meanings in different contexts 

 Integrate semantics from lexical resources into topic model 
framework 
 (Boyd-Graber et al., 2007; Chemudugunta et al., 2008; Guo and Diab, 

2011).  
 The coverage issue again leads to performance bottleneck.  
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Related work(2/2) 
 Word sense disambiguation and word sense induction. 

 The use of word senses 
 Information retrieval (Stokoe, 2003) and text classification (Tufi and 

Koeva, 2007). 
 Drawbacks: 

 Large, manually compiled lexical resources such as the WordNet database 
are required. 

 It is hard to decide the proper granularity of the word sense. 

 In this work, word sense induction (WSI) algorithm is adopted in 
automatically discovering senses of each word in the test dataset. 
 The Bayesian model (Yao and Durme ,2011) 

 HDP: find topic number automatically 
 It outperforms the state-of-the-art systems in SemEval-2007 evaluation 

(Agirre and Soroa, 2007). 

 Word sense induction algorithms have been integrated in information 
retrieval (Schutze and J. Pedersen, 1995; Navigli and Crisafulli, 2010). 
 The above researches only consider senses of words and do not investigate 

connection between words.  
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Topic Models Incorporating 
Statistical Word Senses  
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SA-SLDA 
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Example 
 Robot 

 

 Topic1 : film 

 Topic2: electronics 
technique 

 

sense robot#1  
film: 0.159  
role: 0.069  
performance: 0.019 
... 
 

sense robot#2 
computer:    0.116 
system:        0.039 
software:     0.026 
... 
 

In the end, it's an inspired performance from 
Robot that keeps the film fresh 

There may be a computer operating system 
designed mainly for robots 
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CO-SLDA(1/2) 
 Can the topics of words make a positive impact on the 

indication of senses ? 
 Word robot in topic film has a higher probability to 

contain sense robot#1.  

 

 Take the topics of words as pseudo feedback and co-
infer both topics and senses iteratively.  
 The sense robot#1 has a higher probability to be assigned 

topic film 

 Word robot in topic film has a higher probability to 
contain sense robot#1.  
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CO-SLDA(2/2) 
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Evaluation-Document clustering 
 Setup 

 Test dataset  

 TDT4 datasets 

 Reuters dataset 

 Evaluation task 

 Document clustering task 

 Evaluation criteria  

 Precision  

 Recall  

 F-Measure  

 

 

 

Dataset #doc #topic #words #content words 

TDT41 1270 38 18511 5457 

TDT42 617 33 11782 3548 

Reutes20 9101 20 25748 7454 
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Experiment 1.1: Different Word 
Sense Induction Approaches 
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Experiment 1.2: Different Extended 
LDA Models 
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Evaluation-Distribution Analysis 
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Conclusion 
 In this paper, we propose to represent topics with 

distributions over word senses.  
 SA-SLDA, CO-SLDA 

 Distributions analysis shows a sharper distribution of 
topics in SLDAs which suggests that the proposed models 
provide more confidence on the posterior estimation.  

 Empirical results verify that the word senses induced from 
corpora can facilitate the LDA model in document 
clustering.  

 Specifically, we find the joint inference model (CO-SLDA) 
outperforms the standalone model (SA-SLDA) as the 
estimation of sense and topic can be collaboratively 
improved. 
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