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Abstract

In this paper, we investigate and compare three different pos-
sibilities to convert recurrent neural network language mod-
els (RNNLMs) into backoff language models (BNLM). While
RNNLMs often outperform traditional n-gram approaches in
the task of language modeling, their computational demands
make them unsuitable for an efficient usage during decoding
in an LVCSR system. It is, therefore, of interest to convert
them into BNLMs in order to integrate their information into
the decoding process. This paper compares three different ap-
proaches: a text based conversion, a probability based conver-
sion and an iterative conversion. The resulting language models
are evaluated in terms of perplexity and mixed error rate in the
context of the Code-Switching data corpus SEAME. Although
the best results are obtained by combining the results of all three
approaches, the text based conversion approach alone leads to
significant improvements on the SEAME corpus as well while
offering the highest computational efficiency. In total, the per-
plexity can be reduced by 11.4% relative on the evaluation set
and the mixed error rate by 3.0% relative on the same data set.

Index Terms: language modeling, recurrent neural networks,
decoding with neural network language models, code switching

1. Introduction
Recurrent neural network language models (RNNLMs) can im-
prove perplexity and error rates in speech recognition systems
compared to traditional n-gram approaches [1, 2, 3]. Reasons
are their ability to handle longer contexts and their implicit
smoothing in the case of unseen words or histories. However,
their computational demands are too high to integrate them into
the decoding process of large vocabulary continuous speech
recognition (LVCSR) systems. They are so far mainly used for
rescoring. However, rescoring experiments are based on the ex-
traction of lattices or N-best lists which depend on the language
model (mostly n-gram models) used during decoding.
The main contribution of this paper is the presentation and com-
parison of different techniques for converting RNNLMs into
backoff n-gram language models (BNLMs) in order to incorpo-
rate the neural network information into the decoding process.
Furthermore, we present a novel RNNLM probability based
conversion approach and adapt an existing conversion method
for feed forward neural networks to RNNLMs. All conver-
sion approaches can be applied to any RNNLM structure. The
RNNLM used in this work incorporates both a factorization of
the output layer into classes and an extension of the input layer
with an additional feature vector.

2. Related work
In the last years, recurrent neural networks have been used for
a variety of tasks including language modeling [1]. Due to the
recurrence of the hidden layer, they are able to handle long-term
contexts. It has been shown that they can outperform traditional
language models (LMs), such as n-grams. During the last years,
the structure of RNNLMs has been extended for different pur-
poses. Mikolov et al. factorized the output layer of the network
into classes to accelerate training and testing [2]. In [3, 4], fea-
tures, such as part-of-speech tags, were integrated into the input
layer to add linguistic information to the LM process and pro-
vide more general classes than words to handle data sparseness.
In [3], we built an RNNLM for Code-Switching speech. It used
part-of-speech tags as input features and clustered the output
vector into language classes.
The following subsections describe a method to approximate
RNNLMs with BNLMs and an approach to convert feed for-
ward neural networks into backoff language models.

2.1. Approximate RNNLMs with backoff n-gram LMs

Deoras et al. used Gibbs sampling to approximate an RNNLM
with a BNLM [5]. They trained an RNNLM and used its prob-
ability distribution to generate text data. Afterwards, they built
an n-gram LM with that data. Finally, they interpolated their
resulting n-gram LM with their baseline n-gram LM which has
been built on the same training text as the RNNLM. This fi-
nal model improved the perplexities compared to the baseline
n-gram model and led to different N-best lists and rescoring im-
provements after decoding. The authors found that the results
were better, the more text they generated with their RNNLM.

2.2. Conversion of feed forward neural networks into back-
off language models

Arisoy et al. presented an iterative algorithm to build a BNLM
based on a feed forward neural network (FFNN) [6]. First, n-
gram models and FFNN LMs were trained for each order (2-
grams, 3-grams and 4-grams). Second, a BNLM with the prob-
abilities of the FFNNs was created iteratively. If a probability
could not be extracted from the FFNNs because the word was
not in their output vocabulary Vo, it was calculated by the n-
gram models. This is why they were called “background lan-
guage models” (BLM). Equation 1 shows this.

P (w|h) =

{
β(h)PNNLM (w|h) if w ∈ Vo

PBLM (w|h) if w 6∈ Vo

(1)

Initially, unigram probabilities were obtained from a back-
ground n-gram model. Then, a 2-gram model containing all

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

651



possible bigrams was created. The probabilities from the FFNN
and the background 2-gram model were normalized with a his-
tory dependent constant β and the model was pruned. Based on
the pruned bigrams, a model with all possible trigrams was gen-
erated in the next step using the same strategy as before. As the
background 3-gram model, the 2-gram result from the previous
step was used after it had been extended with the 3-grams of a
traditional 3-gram LM. The authors performed these steps for
2-grams, 3-grams and 4-grams. Finally, the resulting 4-gram
LM was interpolated with a traditional 4-gram LM. It outper-
formed the baseline both in terms of perplexity and recognition
performance.

3. RNNLM for Code-Switching
This section describes the structure of our Code-Switching
RNNLM [3]. It is illustrated in Figure 1.
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Figure 1: RNNLM for Code-Switching
(based upon a figure in [2])

The network consists of three layers: an input layer, a hidden
layer and an output layer. The hidden layer does not only de-
pend on the input layer but also on the hidden layer of the pre-
vious iteration. This is why the network is called “recurrent”.
The input layer is formed by a vector x of the size of the vocab-
ulary. Furthermore, a feature vector f consisting of one entry
for each POS tag is added to the input layer. Hence, the val-
ues of the hidden layer depend on both the current word and
the current POS tag. Based on the values of the hidden layer,
the output layer is calculated. The output vector y consists of
one entry per vocabulary word. Its softmax-activation function
ensures that it provides a probability distribution for the next
word. As mentioned before, Mikolov et al. have factorized the
output vector into frequency based classes for acceleration [2].
We have proposed to use language classes instead to model the
Code-Switching phenomenon [3]. Therefore, the network first
computes the probability for the next language class c and based
on this the probability for the next word.
This RNNLM is converted to BNLMs in this work in order to
use its information directly during decoding.

4. Conversion approaches
For the conversion of the RNNLM into BNLMs, three different
approaches are evaluated and compared. They are presented in
the following subsections.

4.1. Approach 1: text based conversion

The first approach investigated in this paper is the text based
conversion approach suggested by [5]. As described in Sec-
tion 2.1, the RNNLM is used to generate a large amount of
text. Based on this text, we build a 3-gram LM with the SRILM
toolkit [7]. We use Witten-Bell discounting for unigrams and
Kneser-Ney discounting for bigrams and trigrams [8]. We also
investigate the effect of creating different amounts of text data.

4.2. Approach 2: probability based conversion

In our novel approach, we extract unigrams, bigrams and tri-
grams from the training text similar to traditional n-gram ap-
proaches. However, we do not assign count-based probabilities
to them but probabilities of our RNNLM. To obtain these prob-
abilities, we extract the RNNLM probability for every word wi

of the training text and assign it to the current unigram, bigram
and trigram. If the same unigram, bigram or trigram occurs
more than once, the probabilities are averaged. Finally, we nor-
malize the RNNLM outputs y to obtain a probability distribu-
tion using the formular p(wi|h) = y(wi|h)∑

wk
y(wk|h)

. Then, we

smooth the distribution to provide probability mass for backoff.
In particular, we ensure that the probabilities for all n-grams
(n = 1, 2, 3) with the same history h sum to a specific number
0 < S < 1. Hence, the probability mass available for backoff is
1−S. Experiments showed that if we set S history dependently
to the same sum as in a baseline 3-gram model built on the same
training text, the results are better than if a fixed number is cho-
sen for S independent from the word history. This method of
generating a BNLM based on an RNNLM is innovative and one
of the contributions of this paper.

4.3. Approach 3: iterative conversion

The third conversion approach is based on the algorithm pre-
sented by [6]. Since it has already been described in Section 2.2,
this part focuses on the major differences applied in this work.
First, Arisoy et al. adjusted the probabilities of the FFNNs with
a history dependent normalization constant β to the probabili-
ties of the n-gram models [6]. In this study, we regard the usage
of the background n-gram model as backoff from the RNNLM
in the case that the probability cannot be extracted from the
RNNLM. Hence, we calculate β in the same way as a back-
off weight and multiply it with the probabilities of the n-gram
model. Second, we did not train 2-gram and 3-gram RNNLMs.
On the one hand, this seems to contradict the idea of the (in-
finitely) recurrent hidden layer. On the other hand, we found
that restricting the history of the RNNLM led to substantially
worse models in terms of perplexity. In particular, we con-
sidered two ways for adjusting the context of the RNNLM: 1)
Adjusting the number of unfolding steps for backpropagation,
2) Resetting the values of the hidden layer after each bigram
/ trigram of the training text. Both approaches increased the
perplexity by more than 100% relative. Therefore, we devel-
oped a novel method to extract bigram and trigram probabilities
from an RNNLM. It is illustrated in Figure 2. For each word
of the training text (or for each two subsequent words in the
case of trigrams), we obtain the probabilities for all possible
next words. Hence, we extract the whole output vector of the
RNNLM. Then, we store these probabilities as bigram (or tri-
gram) probabilities given the current word (or the previous and
the current word) as histories. Again, we average the probabil-
ities if a bigram or trigram occurs more than once. In contrast
approach 2 (see Section 4.2), we do not only extract probabil-
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Figure 2: Obtain bigram/trigram probabilities from an RNNLM

ities for every bigram and trigram of the training text but for
every possible bigram and trigram based on the histories occur-
ing in the training text. Hence, approach 2 could be regarded
as a simplified sub-case of approach 3 (with substantially less
computation demands).

5. Experiments and results
The three approaches are evaluated and compared in terms of
perplexity and mixed error rate. For these experiments, a Code-
Switching data corpus is used.
Code-Switching (CS) refers to speech which contains more than
one language. This happens in multilingual communities (e.g.
among immigrants). Nowadays, it can also be detected in for-
mer monolingual countries due to globalization effects. For the
automatic processing of CS speech, it is important to capture
long distant dependencies and language changes. Therefore,
multilingual models and CS training data are necessary.

5.1. Data corpus

SEAME (South East Asia Mandarin-English) is a conver-
sational Mandarin-English CS speech corpus. It has been
recorded in Singapore and Malaysia by [9] and was origi-
nally used for the joint research project “Code-Switch” by
Nanyang Technological University (NTU) and Karlsruhe In-
stitute of Technology (KIT). The recordings consist of sponta-
neously spoken interviews and conversations. The corpus con-
tains about 63 hours of audio data with manual transcriptions.
The words can be categorized into Mandarin words (58.6% of
all tokens), English words (34.4% of all tokens), particles (Sin-
gaporean and Malayan discourse particles, 6.8% of all tokens)
and other languages (0.4% of all tokens). The average number
of CS points between Mandarin and English is 2.6 per utterance.
The average duration of monolingual English and Mandarin
segments is only 0.67 seconds and 0.81 seconds, respectively.
In total, the corpus contains 9,210 unique English and 7,471
unique Mandarin words. We divided the corpus into three dis-
joint sets (training, development and evaluation set). The data
were distributed based on criteria like gender, speaking style,
ratio of Singaporean and Malaysian speakers, ratio of the four
language categories and the duration in each set. Table 1 pro-
vides statistical information about the different sets.

Table 1: Statistics of the SEAME corpus
Train set Dev set Eval set

# Speakers 139 8 8
Duration (hrs) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,018
# Tokens 525,168 23,776 11,294

5.2. Perplexity results

For the perplexity experiments, a 3-gram LM built on the
SEAME training text with the SRILM toolkit [7] serves as base-
line language model. It will be referred to as “CS 3-gram”. To
evaluate the closeness of the converted RNNLMs to the original
RNNLM, the perplexity results of the unconverted RNNLM are
also provided.
Table 2 provides perplexity results for approach 1 (text based
conversion) and different amounts of generated text data.

Table 2: PPL results for conversion approach 1 (w denotes the
weight of the converted RNNLM when interpolating it with the
CS 3-gram)

Model PPL dev PPL eval
Baseline: CS 3-gram 268.39 282.86
10M words text 410.67 487.97
+ CS 3-gram (w : 0.290) 256.34 276.61
110M words text 391.24 463.98
+ CS 3-gram (w : 0.328) 251.09 272.01
235M words text 385.05 454.57
+ CS 3-gram (w : 0.342) 249.53 270.55
300M words text 388.52 459.51
+ CS 3-gram (w : 0.336) 249.96 270.91
650M words text 434.22 509.19
+ CS 3-gram (w : 0.310) 252.63 272.82
RNNLM (unconverted) 219.85 239.21

In contrast to the results of [5], we observe that the benefit ob-
tained by larger amounts of generated text is limited. Increas-
ing the text to 300M or more words does not lead to improve-
ments. An explanation could be shortage of training data for the
RNNLM.
Table 3 shows perplexity results for conversion approach 2
(probability based). In each column (unigrams, bigrams, tri-
grams), it is indicated whether the probabilities are extracted
from the RNNLM or from the CS 3-gram model. The first row,
for instance, corresponds to the baseline CS 3-gram model since
all probabilities are obtained from this model.

Table 3: PPL results of 3-gram LMs obtained by approach 2 (w
denotes the weight of the new 3-gram when interpolating it with
the CS 3-gram)

Source of
Unigrams bigrams trigrams PPL dev PPL eval
CS 3-gram CS 3-gram CS 3-gram 268.39 282.86
RNNLM RNNLM RNNLM 574.82 585.71

+ CS 3-gram (w : 0.088) 267.58 280.76
CS 3-gram RNNLM RNNLM 287.57 309.03

+ CS 3-gram (w : 0.434) 260.04 274.89
CS 3-gram CS 3-gram RNNLM 285.01 301.81

+ CS 3-gram (w : 0.324) 263.75 277.85

The RNNLM does not seem to provide reliable estimates for
unigrams. Hence, the RNNLM needs a rather long context to
benefit from the recurrence of the hidden layer.
Finally, Table 4 presents the perplexity results for approach 3
(iterative conversion). The model “2-gram-BO-LM” denotes
the 2-gram LM obtained after the first iteration while the name
“3-gram-BO-LM” refers to the final 3-gram LM.
The perplexity results of approach 3 are superior to the results
of the other two approaches. Nevertheless, they also reveal its
main limitation: the probability extraction based on the training
text. Since more bigram histories (one word histories) are cov-
ered in the training text than trigram histories (two word histo-
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Table 4: PPL results of LMs obtained by approach 3 (w denotes
the weight of the new 2-gram when interpolating it with the CS
n-gram)

Model PPL dev PPL eval
Baseline: CS 2-gram 276.86 295.00
Baseline: CS 3-gram 268.39 282.86
2-gram-BO-LM (without pruning) 257.08 281.39
2-gram-BO-LM (pruned to 2M bigrams) 254.79 278.12
+ CS 2-gram (w : 0.716) 243.66 262.13
+ CS 3-gram (w : 0.635) 235.12 250.64
3-gram-BO-LM (pruned to 9.5M trigrams) 280.57 300.83
+ CS 3-gram (w : 0.406) 249.11 263.06
3-gram-BO-LM (pruned to 1M trigrams) 275.38 294.93
+ CS 3-gram (w : 0.440) 249.39 263.56
3-gram-BO-LM (pruned to 300k trigrams) 258.06 277.51
+ CS 3-gram (w : 0.615) 247.72 263.15
RNNLM (unconverted) 219.85 239.21

ries), the RNNLM can be used for more bigrams than trigrams.
For trigrams, the algorithm has to backoff to the background
3-gram LM more often. This can be an explanation why the
2-gram-BO-LM outperforms the 3-gram-BO-LM. The interpo-
lation weights of the results of approach 3 are higher than the
weights of the other approaches. This could indicate that ap-
proach 3 captures additional information not contained in the
original training text.
In summary, all conversion approaches lead to LMs with lower
perplexity values than the baseline model. A t-test shows that
all improvements are statistically significant (at a level of 0.01).
Furthermore, the different models obtained by approach 1 are
significantly different from each other and the 2-gram-BO-LM
of approach 3 is significantly better than the 3-gram-BO-LM.
Finally, an LM is built by interpolating the best result of each
approach. This interpolated LM has a perplexity of 232.48 on
the development set and 248.34 on the evaluation set which is
slightly better than the 2-gram-BO-LM + CS 3-gram LM. The
interpolation weights have been optimized on the SEAME de-
velopment set using the SRILM toolkit. They are 0.389 for the
LM obtained by approach 3, 0.099 for the LM of approach 1,
0.237 for the LM created with approach 2 and 0.274 for the CS
3-gram. Interestingly, the weight for approach 2 is higher than
the weight for approach 1. This shows that approach 2 also pro-
vides valuable information although its results are not as good
as the results of the other two methods.

5.3. Decoding experiments

The BNLMs are used directly in decoding. This section outlines
important facts about the ASR system and presents the results.

5.3.1. Description of the decoding system

We apply BioKIT, a dynamic one-pass decoder [10]. The acous-
tic model of the ASR system is speaker independent. It applies a
fully-continuous 3-state left-to-right HMM. The emission prob-
abilities are modeled with bottleneck features [11]. The phone
set contains English and Mandarin phones, filler models for
continuous speech (+noise+, +breath+, +laugh+) and an addi-
tional phone +particle+ for Singaporean and Malayan particles.
We use a context dependent acoustic model with 3,500 quint-
phones. Merge-and-split training is applied followed by three
iterations of Viterbi training. To obtain a dictionary, the CMU
English [12] and Mandarin [13] pronunciation dictionaries are
merged into one bilingual pronunciation dictionary. The num-

ber of English and Mandarin entries in the lexicon is 56k. Ad-
ditionally, several rules from [14] are applied which generate
pronunciation variants for Singaporean English. On the lan-
guage model side, a 3-gram model is built on the SEAME train-
ing transcriptions. It is interpolated with LMs built on English
and Mandarin monolingual texts (from the NIST and GALE
project). This increases the perplexity (from 268.39 to 292.58
on the development set) but reduces the out-of-vocabulary rate
(from 2.10% to 1.41% on the development set) and, therefore,
improves the error rate results. The resulting LM will be re-
ferred to as decoder baseline 3-gram in the following experi-
ments.

5.3.2. Decoding results

As a performance measure for decoding Code-Switching
speech, we use the mixed error rate (MER) which applies word
error rates to English and character error rates to Mandarin seg-
ments [15]. With character error rates for Mandarin, the perfor-
mance can be compared across different word segmentations.
(In this work, we use a manual word segmentation.)
Table 5 shows the results of the converted BNLMs. Each
BNLM was interpolated with the decoder baseline 3-gram LM
prior to decoding.

Table 5: Decoding results with converted RNNLMs
Model MER dev MER eval
Decoder baseline 3-gram 39.96% 34.31%
Approach 1: 235M text 39.37% 33.41%
Approach 2 40.44% 34.65%(bigrams and trigrams from RNNLM)
Approach 3: 3-gram-BO-LM 39.58% 33.58%
Approach 3: 2-gram-BO-LM 39.37% 33.28%
Approach1 + approach2 + approach3 39.26% 33.43%

Except for approach 2, all conversion approaches result in LMs
which improve the decoding results. A t-test shows that all im-
provements on the evaluation set are statistically significant (at a
level of 0.025). However, the differences within the approaches
are not significant. As a result, converting RNNLMs and using
them during decoding is beneficial. Whereas, the conversion
method does not seem to be relevant on the SEAME corpus.

6. Conclusions
This paper presented and compared three different approaches
to convert recurrent neural networks into backoff language
models. We applied a text based conversion method and
adapted an iterative approach for feed forward neural networks
to recurrent neural networks. Moreover, we presented a novel
probability based conversion method. The different conversion
approaches were evaluated in the context of speech recognition
of spontaneous Code-Switching speech. The text based and iter-
ative conversion approaches outperformed the probability based
conversion approach. Nevertheless, the combination of the re-
sults of all three approaches led to the best results in terms of
perplexity and mixed error rate on the SEAME corpus. The per-
plexity on the SEAME evaluation set was decreased by 11.4%
relative and the mixed error rate by 3.0% relative compared to a
traditional 3-gram language model. Based on significance anal-
yses of the results, we would suggest to use the text based con-
version approach for corpora similar to the SEAME corpus be-
cause it led to similar results as the iterative approach while its
computation costs were considerably lower.

654



7. References
[1] Mikolov, T. and Karafiát, M. and Burget, L. and Cernocky, J.

and Khudanpur, S., “Recurrent neural network based language
model”, Proc. of Interspeech, 2010.

[2] Mikolov, T. and Kombrink, S. and Burget, L. and Cernocky, JH
and Khudanpur, S., “Extensions of recurrent neural network lan-
guage model”, Proc. of ICASSP. IEEE, 2011.

[3] Adel, H. and Vu, N. T. and Kraus, F. and Schlippe, T. and Li, H.
and Schultz, T., “Recurrent neural network language modeling for
code switching conversational speech”, Proc. of ICASSP. IEEE,
2013.

[4] Shi, Y. and Wiggers, P. and Jonker, C. M., “Towards recurrent
neural networks language models with linguistic and contextual
features”, Proc. of Interspeech, 2012.

[5] Deoras, A. and Mikolov, T. and Kombrink, S. and Karafiát, M. and
Khudanpur, S., “Variational approximation of long-span language
models for LVCSR”, Proc. of ICASSP, IEEE 2011.

[6] Arisoy, E. and Chen, S. F. and Ramabhadran, B. and Sethy, A.,
“Converting neural network language models into back-off lan-
guage models for efficient decoding in automatic speech recogni-
tion”, Proc. of ICASSP, IEEE 2013.

[7] Stolcke, A. and others, “SRILM - an extensible language model-
ing toolkit”, Proc. of SLP, 2002.

[8] Chen, S. F. and Goodman, J., “An empirical study of smoothing
techniques for language modeling”, Technical Report TR-10-98,
1998.

[9] Lyu, D. C. and Tan, T. P. and Chng, E. S. and Li, H., “An
Analysis of a Mandarin-English Code-switching Speech Corpus:
SEAME”, Oriental COCOSDA, 2010.

[10] Telaar, D. and Wand, M. and Gehrig, D. and Putze, F. and Amma,
C. and Heger, D. and Vu, N.T. and Erhardt, M. and Schlippe, T.
and Janke, M. and Herff, C. and Schultz, T., “BioKIT - Real-time
decoder for biosignal processing”, Proc. of Interspeech, 2014.

[11] Vu, N. T. and Metze, F. and Schultz, T., “Multilingual bottleneck
features and its application for under-resourced languages”, Proc.
of SLTU, 2012.

[12] “CMU pronouncation dictionary for English”, Online:
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[13] Hsiao, R. and Fuhs, M. and Tam, Y. and Jin, Q. and Schultz, T.,
“The CMU-InterACT 2008 Mandarin transcription system”, Proc.
of ICASSP. IEEE, 2008.

[14] Chen, W. and Tan, Y. and Chng, E. and Li, H., “The development
of a Singapore English call resource”, Oriental COCOSDA, 2010.

[15] Vu, N. T. and Lyu, D.C. and Weiner, J. and Telaar, D. and
Schlippe, T. and Blaicher, F. and Chng, E.S. and Schultz, T.
and Li, H., “A first speech recognition system for Mandarin-
English code-switch conversational speech”, Proc. of ICASSP.
IEEE, 2012.

655


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Heike Adel
	Also by Katrin Kirchhoff
	Also by Ngoc Thang Vu
	Also by Dominic Telaar
	Also by Tanja Schultz
	----------

