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Abstract

This paper presents a unified model to perform language and speaker
recognition simultaneously and altogether. The model is based on a multi-task
recurrent neural network where the output of one task is fed as the input of the
other, leading to a collaborative learning framework that can improve both
language and speaker recognition by borrowing information from each other. Our
experiments demonstrated that the multi-task model outperforms the
task-specific models on both tasks.
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1 Introduction
Language recognition (LRE) [1] and speaker recognition (SRE) [2] are two im-

portant tasks in speech processing. Traditionally, the research in these two fields

seldom takes account of each other, although some techniques are indeed shared,

e.g., SVM [3], the i-vector model [4, 5], and deep neural models [6, 7]. This can be

largely attributed to the intuition that speaker characteristics are language inde-

pendent in SRE, and dealing with speaker variation is regarded as a trivial request

in LRE. This independent processing of language identities and speaker traits, how-

ever, is not the way we human beings process speech signals: it is easy to imagine

that our brain recognizes speaker traits and language identities simultaneously, and

the success of identifying languages helps discriminate speakers, and vice versa. In

fact, some researchers have noticed that language and speaker are two correlated

factors. For example, it has been confirmed that language mismatch indeed leads

to serious performance degradation for speaker recognition [8, 9, 10, 11], indicat-

ing that language and speaker are correlated and should be modelled, trained, and

decoded jointly.

A simple joint learning approach is to pool multilingual data of multiple speak-

ers and train models that cover multiple language and speaker conditions. This

pooled training approach is easy to implement and generally effective (e.g., [8, 9]),

but it does not consider the interaction between language identities and speaker

traits. Another joint learning approach is based on the joint factor analysis (JFA)
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framework [12]. This approach treats language and speaker as two dependent ran-

dom variable and their linear combination explains the distribution of speech data.

This approach was employed by Lu et al. [13] to deal with multilingual speaker

recognition, and obtain interesting performance gains. A potential issue of the JFA

approach is that it is a pure generative model, and therefore is less powerful for

discriminative tasks such as SRE and LRE.

This paper presents a novel collaborative learning approach which models corre-

lated factors explicitly as JFA, but trains the model discriminatively. The basic idea

is to feed the output of one task as part of the input of the other task, resulting in

a multi-task recurrent model. By this way, the two tasks can be learned simultane-

ously and collaboratively. This collaborative learning approach, which is a special

joint learning method, was recently proposed by Tang et al. [14], and has been suc-

cessfully applied to speech and speaker joint training. In this paper, we apply the

collaborative learning approach to SRE and LRE, as illustrated in Fig. 1. Note that

collaborative learning is a general framework and the component of each task can be

implemented using any model, and we prefer recurrent neural networks (RNN) due

to its great potential in various speech processing tasks including SRE [7]. For LRE,

although there is no literature to report the performance with RNN, we will show

in this paper that it does provide highly competitive performance. In summary, the

contributions of this paper include: (1) we demonstrated that SRE and LRE can be

jointly learned by collaborative learning; (2) we demonstrated that RNN is highly

powerful for SRE and LRE, especially with collaborative learning. Furthermore,

when the test speech is extremely short (e.g., one second), the RNN model can

deliver impressively better performance than the state-of-the-art i-vector/PLDA

approach for SRE and i-vector/SVM approach for LRE.
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Figure 1 Multi-task recurrent model for language and speaker recognition.

The rest of the paper is organized as follows: Section 2 presents the model ar-

chitecture, and Section 3 reports the experiments. The conclusions and the future

work are presented in Section 4.
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2 Multi-task RNN and collaborative learning
This section starts from the neural model structure for single tasks, and then extends

to the multi-task recurrent model for collaborative learning.

2.1 Basic single-task model

We choose a particular RNN, the long short-term memory (LSTM) [15], to build

the baseline single-task systems for SRE and LRE. LSTM has delivered good per-

formance in SRE [16], and we will show that it is also an effective model for LRE.

Particularly, the recurrent LSTM structure proposed in [17] is used, as shown in

Fig. 2, and the associated computation is as follows:
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Figure 2 Basic recurrent LSTM model for LRE and SRE single-task baselines.

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf )

ct = ft � ct−1 + it � g(Wcxxt +Wcrrt−1 + bc)

ot = σ(Woxxt +Worrt−1 +Wocct + bo)

mt = ot � h(ct)

rt = Wrmmt

pt = Wpmmt

yt = Wyrrt +Wyppt + by.

In the above equations, the W terms denote weight matrices and the b terms denote

bias vectors. xt and yt are the input and output vectors; it, ft, ot respectively

represent the input, forget and output gates; ct is the cell and mt is the cell output.

rt and pt are two output components derived from mt, in which rt is recurrent

and used as input of the next time step, while pt is not recurrent and contributes

to the present output only. σ(·) is the logistic sigmoid function, and g(·) and h(·)
are non-linear activation functions, often chosen to be hyperbolic. � denotes the

element-wise multiplication.
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2.2 Multi-task recurrent model

The basic idea of the multi-task recurrent model, as shown in Figure 1, is to use

the output of one task at the current time step as an auxiliary input of the other

task at the next step. In this study, we use the recurrent LSTM model shown in the

previous section to build the LRE and SRE components, and then combine them

by some inter-task recurrent connections. This results in a multi-task recurrent

model by which LRE and SRE can be trained in a collaborative way (collaborative

learning). The model structure is shown in Figure 3, where we use the superscript

l and s to denote the LRE and SRE task, respectively and the dash lines represent

the inter-task recurrent connections.

A multitude of model configurations can be selected. The first question is from

where the recurrent feedback should be extracted. For example, it can be extracted

from the cell ct or cell output mt, or from the output component rt or pt, or even

from the output yt. Another question is to where the feedback information should

be propagated. It can be the input variable xt, the input gate it, the output gate

ot, the forget gate ft, or the non-linear function g(·). Note that a weight matrix is

introduced for each recurrent feedback.
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Figure 3 Multi-task recurrent learning for LRE and SRE.

In view of all the above alternatives, the multi-task recurrent model is rather flex-

ible. The structure shown in Fig. 3 is just one simple example, where the recurrent
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feedback is extracted from both the recurrent projection rt and the nonrecurrent

projection pt, and the feedback is propagated to the non-linear function g(·). With

the recurrent feedback, the computation for LRE can be expressed as follows:

ilt = σ(W l
ixxt +W l

irr
l
t−1 +W l

icc
l
t−1 + bli)

f lt = σ(W l
fxxt +W l
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and the computation for SRE is as follows:
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3 Experiments
In this section, we first describe the data profile, and then present the baseline

systems. Finally, experimental results of the collaborative learning approach are

given.

3.1 Data

Two databases were used to perform the experiment: the WSJ database in English

and the CSLT-C300 database in Chinese. All the utterances in the two databas-

es were labelled with both language and speaker identities. The development set

involves two subsets: WSJ-E200 that contains 200 speakers (24, 031 utterances) s-

elected from WSJ, and CSLT-C200 that contains 200 speakers (20, 000 utterances)

selected from the CSLT-C300 database. The development set was used to train

SVM, the i-vector model and the multi-task recurrent model.

The evaluation set involves an English subset WSJ-E110 that contains 110 speak-

ers selected from WSJ, and a Chinese subset CSLT-C100 that contains 100 speakers
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selected from the CSLT-C300 database. For each speaker in each subset, 10 utter-

ances were used to enroll its speaker and language identity, and the rest 13, 236

utterances in English and 9, 000 utterances in Chinese are used to perform test. For

SRE, the test is pair-wised, leading to 13, 236 target trails and 1, 442, 724 imposter

trails in English, plus 9, 000 target trails and 891, 000 imposter trials in Chinese.

For LRE, the number of test trails is the same as the number of test utterances,

which is 13, 236 for English trails and 9, 000 for Chinese trails.

3.2 LRE and SRE baselines

We first present the LRE and SRE baselines. All the experiments were conducted

with the Kaldi toolkit [18]. Two baseline systems were constructed, one is based on

i-vectors, and the other is based on LSTM.

3.2.1 i-vector baseline

For the i-vector baseline, the acoustic feature was 39-dimensional MFCCs. The num-

ber of Gaussian components of the UBM was 1, 024, and the dimension of i-vectors

was 200. The produced i-vectors were used to conduct both SRE and LRE with

different scoring methods. For SRE, we consider the simple Cosine distance as well

as the popular discriminative models LDA and PLDA; for LRE, we consider Cosine

distance and SVM. All the discriminant models were trained on the development

set.

The results of the SRE baseline are reported in Table 1, in terms of equal error

rate (EER). We tested two scenarios, one is a full-length test which uses the entire

enrollment and test utterance; the other is a short-length test which involves only

1 second of speech (sampled from the original data after voice activity detection

applied). In both scenarios, the language of each test is assumed to be known in

prior, i.e., the test on English and Chinese datasets are independent.

Table 1 SRE baseline results.

Test System Dataset EER(%)
Cosine LDA PLDA

Full i-vector English 0.88 0.70 0.62
Chinese 1.28 0.97 0.84

r-vector English 1.25 1.38 3.57
Chinese 1.70 1.61 4.93

Short i-vector English 7.00 4.01 3.47
Chinese 9.12 6.16 5.69

r-vector English 3.27 2.70 7.88
Chinese 4.77 3.99 8.21

For LRE, the purpose is to discriminate two languages (English and Chinese).

Hence, it is an identification task. We use identification error rate (IDR) [19] to

measure performance of LRE systems, which is the fraction of the identification

mistakes in the total identification trials. For a more thorough comparison, the num-

ber of identification errors (IDE) is also reported. The results of the i-vector/SVM

baseline system are reported in Table 2.

3.2.2 r-vector baseline

The r-vector baseline is built based on the recurrent LSTM structure shown in Fig. 2.

The SRE and LRE systems use the same configurations: the dimensionality of the
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Table 2 LRE baseline results.

Test System IDR(%) IDE
Full i-vector/Cosine 3.43 763

i-vector/SVM 0.01 2
r-vector/Cosine 0.11 25
r-vector/SVM 0.21 47
r-vector/Softmax 0.13 29

Short i-vector/Cosine 10.21 2270
i-vector/SVM 1.40 311
r-vector/Cosine 0.98 218
r-vector/SVM 0.63 139
r-vector/Softmax 0.58 129

cell was set to 1, 024, and the dimensionality of both the recurrent and nonrecurrent

projections was set to 100. For the SRE system, the output corresponds to the 400

speakers in the training set; For the LRE system, the output corresponds to the

two languages to identify: English and Chinese.

The output of the recurrent and nonrecurrent projections were concatenated and

averaged over all the frames of an utterance, resulting in an ‘r-vector’ for that

utterance. The r-vector derived from the SRE system represents speaker characters,

and the r-vector derived from the LRE system represents the language identity. As

in the i-vector baseline, decisions were made based on distance between r-vectors,

measured by either the Cosine distance or some discriminative models. The same

discriminative models as in the i-vector baseline were used, except that in the LRE

system, the softmax outputs of the task-specific LSTMs can be directly used to

identify language. The results are shown in Table 1 and Table 2 for SRE and LRE,

respectively.

The results in Table 1 show that for SRE, the i-vector system with PLDA performs

better than the r-vector system in the Full-length test. However, in the Short-length

test, the r-vector system is clearly better. This is understandable as the i-vector

model is generative and relies on sufficient data to estimate the data distribution;

the LSTM model, in contrast, is discriminative and the speaker information can be

extracted even with a single frame. The discrepancy on model type also explains the

observation that the discriminative models are more effective for the i-vector system

than for the r-vector system, as the former is discriminative already. A pair-wised

t-test confirms that the performance advantage of the r-vector/LDA system over

the i-vector/PLDA system is statistically significant (p < 1e-5).

The results in Table 2 show a similar trend, that the i-vector system (with SVM)

works well in the Full-length test, but in the Short-length test, the r-vector system

shows much better performance, even with the simple Cosine distance. Again, this

can be explained by the fact that the i-vector model is generative, while the r-vector

model is discriminative. To the authors’ best knowledge, we are among the earliest

to report the impressive success of RNN on short-utterance LRE.

3.3 Multi-task recurrent model with collaborative learning

The multi-task recurrent LSTM system, as shown in Fig. 3, were constructed by

combining the LRE and SRE r-vector systems, with inter-task recurrent connections

augmented. Following the experience in [14], we employ the recurrent projection

output of the SRE (LRE) system as the feedback, and tested the results when this
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Table 3 SRE results with collaborative learning.

Feedback EER(%)
Input Full Short

i f o g Eng. Chs. Eng. Chs.
r-vector Baseline 1.38 1.61 2.70 3.99√

1.27 1.43 2.50 3.61√
1.38 1.38 2.55 3.52√
1.19 1.31 2.48 3.66√
1.37 1.48 2.67 3.52√ √ √ √
1.32 1.31 2.52 3.69

Table 4 LRE results with collaborative learning.

Feedback IDE
Input Full Short

i f o g Cosine SVM Softmax Cosine SVM Softmax
r-vector Baseline 25 47 29 218 139 129√

5 2 0 11 6 2√
1 0 0 3 1 1√

11 2 0 21 8 3√
0 0 1 2 2 1√ √ √ √
6 2 0 17 10 2

feedback is propagated to different components of the LRE (SRE) system. The

results are reported in Table 3 and Table 4 for SRE and LRE, respectively.

The results show clearly that the collaborative learning provides consistent perfor-

mance improvement on both SRE and LRE, despite which component the feedback

is applied to. Experimental performance suggests that the output gate is an appro-

priate component for SRE to receive the feedback, whereas for LRE, the forget gate

seems a more suitable choice. However, these observations are based on the rela-

tively small databases. More experiments on large data are required to confirm and

understand the observations. We finally highlight that the collaborative training

provides very impressive performance gains for LRE: it significantly improves the

single-task r-vector baseline, and beats the i-vector baseline even on the Full-length

task. This strongly support our conjecture that correlated tasks should be learned

jointly, as our brain does every day.

4 Conclusions
We report a novel collaborative learning approach that performs speaker and lan-

guage recognition as a unified process, based on a multi-task recurrent neural net-

work. Primary results demonstrated that the proposed approach can deliver con-

sistent performance improvement over the single-task baselines, particularly for the

LRE task. Future work involves experimenting with large databases and analyz-

ing the properties of the collaborative mechanism, e.g., trainability, stability and

extensibility.
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