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ABSTRACT

In this paper, we revise two commonly used saturated functions, the logistic sig-
moid and the hyperbolic tangent (tanh). We point out that, besides the well-known
non-zero centered property, slope of the activation function near the origin is an-
other possible reason making training deep networks with the logistic function
difficult to train. We demonstrate that, with proper rescaling, the logistic sigmoid
achieves comparable results with tanh. Then following the same argument, we
improve tahn by penalizing in the negative part. We show that “penalized tanh”
is comparable and even outperforms the state-of-the-art non-saturated functions
including ReLU and leaky ReLU on deep convolution neural networks.
Our results contradict to the conclusion of previous works that the saturation prop-
erty causes the slow convergence. It suggests further investigation is necessary to
better understand activation functions in deep architectures.

1 INTRODUCTION

Activation functions play an important role in artificial neural networks in that they help bring non-
linearity to the networks. Different activation functions can significantly affect the performance of a
neural network, and therefore how to choose a good activation function has attracted lots of studies
in the literature. One of the publicly accepted arguments is that a saturated activation function
may cause the gradient vanishing (and/or explosion), and thus is less preferred. In particular, it
has been reported that the backpropagated gradient of a network which uses the logistic sigmoid
f(x) = 1/(1 + e−x) as its activation function may vanish or explode quickly. Currently there is
no success, to our best knowledge, in training a deep neural network with this activation function
without Batch Normalization(Ioffe & Szegedy, 2015). However, different from logistic sigmoid, the
performances of networks with tanh, which is also saturated, are much more stable. For example, a
deep convolution neural network using tanh is able to reach a local optimality with careful Layer-
sequential unit-variance weight initialization (Mishkin & Matas, 2015). It then raise a question
what makes these two functions so different, despite that they are both saturated by which our
investigations in the paper are driven.

We start with verifying the assumptions that are required in Xavier initialization (Glorot & Bengio,
2010) for a general activation function in its linear regime, based on which we discuss the failure
of logistic sigmoid and propose two methods to overcome the training problem of the deep Sigmoid
networks. Our analysis suggests that besides the well-known non-zero centered property, slope and
the offset of the activation function near the origin is another possible reason causing the vanishing
(and/or explosion) of the gradient.

One well accepted explanation about the empirical success of ReLU is about its non-saturated prop-
erty, compared to other saturated functions. Similarly, we design new activation functions to inves-
tigate the essential effects of being leaky, its linear regime, and its saturation property outside the
linear regime of an activation function. In particular, we compare the performance of a new activa-
tion function, called leaky tanh, to the performances of ReLU and leaky ReLU. The new function
penalized tanh shares similar property in its linear regime with leaky ReLU, yet different from ReLU
or leaky ReLU, it is saturated outside its linear regime. Our results provide more insights about the
effect of different activation functions on the performance of the neural networks, and suggest that
further investigation is still needed for better understanding.
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All the networks in the paper are trained by using MXNet (Chen et al., 2015).

2 WHY TRAINING DEEP NEURAL NETWORKS IS HARD WITH THE LOGISTIC
SIGMOID

We first investigate the behaviors of the activation variance and the gradient variance, for a general
activation function in its linear regime, within the theoretical framework developed in (Glorot &
Bengio, 2010). Our analysis is focusing on the initialization stage. Basis on the analysis, conditions
that are required for the activation function to maintain the activation variance and the gradient
variance are presented, which then leads to the discussion about the difficulty of training a deep
neural networks using the logistic sigmoid.

To simplify the analysis, we assume the following fully connected neural network. Let y(l) ∈ Rnl

be the output of layer l for l = 1, 2, . . . , L, and f be the activation function, in a forward pass we
have

x(l) =W (l−1)y(l−1) + b(l−1) (1)

y(l) = f(x(l)) (2)
(3)

where the weight W (l−1) ∈ Rnl×nl−1 and the bias b(l−1) ∈ Rnl .

Assume that we initialized b(l−1) to be 0. Thus the randomness of y(l) comes from both the output
of previous layer y(l−1) and the weight W (l−1) which is randomly initialized. Further assume that
for each W (l), its elements are initialized independently with E

[
W (l)

]
= 0 with equal variance σ2

l .
Also assume that all the weights {W (l); l = 0, . . . , L− 1} are mutually independent.

Proposition 1. Assume that ∂cost
∂y(L) is independent toW (t), t = 1, . . . , L−1, with Var

(
∂cost
∂y(L)

)
= dLI

for some constant dL. Also assume that E
[

∂cost
∂y(L)

]
= 0. Let the activation function f(x) = αx+ β,

then for any layer l,

Var
(
y(l)
)
= α2nl−1σ

2
l−1

(
Var
(
y(l−1)

)
+ β2Inl

)
. (4)

Var
(
∂cost
∂y(l−1)

)
= α2nlσ

2
l−1Var

(
∂cost
∂y(l)

)
. (5)

The proof is formally developed in Appendix 5, following the idea of Glorot & Bengio (2010).
Assume that the network is initialized using Xavier initialization, then to maintain the activation
variance and the gradient variance, namely for l = 1, . . . , L,

Var
(
y(l)
)
= Var

(
y(l−1)

)
and Var

(
∂cost
∂y(l)

)
= Var

(
∂cost
∂y(l−1)

)
;

nlσ
2
l−1 u 1 and nl−1σ

2
l−1 u 1;

α and β must satisfy that
α = 1 and β = 0.

Now consider the Taylor expansions of different activation functions,

sigmoid(x) =
1

2
+
x

4
− x3

48
+O(x5) (6)

tanh(x) = 0 + x− x3

3
+O(x5) (7)

relu(x) = 0 + x for x ≥ 0. (8)

It shows that in their linear regimes, both tanh and relu have the desirable property that α = 1 and
β = 0. If the weight is initialized with zero mean and 1/n variance, which is one of the widely
used method Glorot & Bengio (2010), then both the forward output and backward gradient will be
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in proper range at least for the first few iterations. However, this is not true for logistic sigmoid.
First, its slope in the linear regime is 1/4 rather than 1, then we need to initialize the weight is a 16
times smaller variance to keep the each layer’s gradient variance the same. Second, it has a non-zero
mean, which makes the output variance increase linear with the layer.

One simply way to fix this problem is rescale the logistic sigmoid to match the first two degree
coefficient with both tanh and relu, so the weight initialization method used for the latter two can be
applied to the logistic sigmoid. In other word, we transform the logistic sigmoid by

scaled sigmoid(x) = 4× sigmoid(x)− 2 =
4

1 + e−x
− 2 (9)

The scaled logisitc sigmoid is illustrated in Figure 1. As can bee seen, it is similar to tanh near 0,
but the saturation value is two times larger than tanh. Our experimental results shows that the scaled
sigmoid function achievess comparable results with tanh.

In the other perspective, the scale factor 4 in scaled sigmoid function is equivalent to scale initial-
ization and learning rate by factor of 4; the bias term -2 in scaled sigmoid function is equivalent to
fixed bias after linear transform.
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Figure 1: Compare the scaled logistic sigmoid with other activation functions.

3 PENALIZED SATURATED ACTIVATION FUNCTIONS

Recently, several variants have been proposed in the literature to improve the performance of non-
saturated activation functions. One that we are particularly interested in is the ‘leaky ReLU’, which
is as follows.

f(x) =

{
x if x > 0

ax otherwise
(10)

where a ∈ (0, 1). Comparing to the standard ReLU, leaky ReLU gives nonzero gradient for negative
value. Although its output is no longer sparse, which is claimed to be the main advantage of ReLU,
recent works show that oftentimes leaky ReLU outperforms ReLU (Xu et al., 2015; Clevert et al.,
2015).

On the other viewpoint, the leaky ReLU can be viewed as an improvement over the simple identical
activation function f(x) = x which penalizes the gradient of the negative part. Inspired by this
observation, we propose to also penalize the negative part of the saturated activation functions. In
particular, we propose “penalized tanh” which takes the form

f(x) =

{
tanh(x) if x > 0

a · tanh(x) otherwise
(11)
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where a ∈ (0, 1). Figure 2 compares the penalized tanh with other activation functions. As can be
seen, if the same a is used, the penalized tanh can be viewed as a saturated version of leaky ReLU.
These two functions have similar value near 0, since both function share the same Taylor expansion
up to the first order. But different to leaky Relu, penalized tanh saturates to −a and 1 when moving
away from 0.
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Figure 2: Compare the penalized tanh with other functions. Both penalized tanh and leaky ReLU
uses a = 1/4.

4 EXPERIMENT

Activation Train Accuracy Test Accuracy
sigmoid diverged diverged
scaled sigmoid 89.39% 59.11%
tanh 96.94% 61.99%
ReLU 99.17% 67.91%
penalized tanh (a = 0.25) 99.75% 70.43%
leaky ReLU (a = 0.25) 99.85% 70.64%

Table 1: Vary activation function for inception network on CIFAR-100
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Figure 3: Error versus epoch for inception network with various activation function on CIFAR-100.

We evaluated the proposed two activation functions on a 33-layers inception network without batch
normalization (Ioffe & Szegedy, 2015). We used the CIFAR-100 dataset, which is an image classi-
fication dataset with 100 classes. All networks are initalized with (Glorot & Bengio, 2010).
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The converge results are shown in Figure 3 and the final training and test accuracy is reported in
Table 1. As expected, ReLU converges faster than tanh but is outperformed by leaky ReLU. For
the proposed functions, the scaled logistic sigmoid successfully converges into a local minimal. Its
performance is close its cousin tanh, both of them are saturated and have have similar shape near 0.
On the other hand, the penalized tanh converges more than 2 times faster than the standard tanh. It
gives almost identical results with its non-saturated version, namely leaky ReLU.

Based on the observations, it seems that the performance of various activation functions on the
inception network mainly depend on the function shape near 0, namely the values of f(0) and
∂f(0). It is possibly due to the inputs to the activation function are near 0.

5 CONCLUSION & FUTURE WORK

The result of this paper is two-fold. We first attempt to explain and fix the failure of training a deep
Sigmoid network, based on the idea of the work (Glorot & Bengio, 2010). A re-scaled Sigmoid
activation is proposed in the paper to make deep Sigmoid network trainable. The other result of this
paper is to investigate the differences in network performances between using saturated activation
function and using non-saturated ones. Our result suggests that when using penalization on nega-
tive part, saturation of the activation function is comparable to ReLU and Leaky ReLU. There are
still many open questions requiring further investigation: 1. How to efficiently determine different
learning rates for different layers in a very deep neural network? 2. How does the positive part (on
[0,+∞)) and the negative part (on (−∞, 0]) of the activation function affect the performance of the
network?

ACKNOWLEDGMENTS

The authors would like to thank Tianqi Chen, Ian Goodfellow for discussion and NVIDIA for hard-
ware support.

REFERENCES

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.
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APPENDIX

Proof of Proposition 1. First note that for each l = 1 . . . , L,

E
[
x(l)
]
= E

[
W (l−1)y(l−1) + b(l−1)

]
= E

[
W (l−1)

]
E
[
y(l−1)

]
+ 0 = 0,

where the last equality is due to E
[
W (l−1)] = 0. Therefore,

E
[
y(l)
]
= E

[
f(x(l))

]
= E

[
αx(l) + β1

]
= αE

[
x(l)
]
+ β1 = β1
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To compute the variance of y(l), by definition

Var
(
y(l)
)
= Var

(
αx(l) + β1

)
= α2Var

(
x(l)
)
.

Note that y(l−1) only depends on the weights W 0, . . . ,W (l−2), thus is independent to W (l−1).
plugging the definition of x(l),

Var
(
x(l)
)
= Var

(
W (l−1)y(l−1)

)
= E

[
W (l−1)y(l−1)y(l−1)>W (l−1)>

]
− E

[
W (l−1)y(l−1)

]
E
[
W (l−1)y(l−1)

]>
= E

[
W (l−1)y(l−1)y(l−1)>W (l−1)>

]
− E

[
W (l−1)

]
E
[
y(l−1)

]
E
[
y(l−1)

]>
E
[
W (l−1)

]>
= E

[
W (l−1)y(l−1)y(l−1)>W (l−1)>

]
,

where the third equality is due to the independence of y(l−1) and W (l−1), and the last equality is
due to E

[
W (l−1)] = 0.

We will prove that the covariance matrix of y(l) is clI for some constant cl, l = 1, . . . , L, using
mathematical induction. For the base case y(0) being the input, by assumption the claim holds.
Now assume that the claim holds for l − 1, i.e. Var

(
y(l−1)

)
= cl−1I , we would like to prove that

Var
(
y(l)
)
= clI for some constant cl. To simplify the proof, we would use Lemma 1 as follows.

Lemma 1. Given that Var (y) = CIn and y is independent to W ∈ Rm×n, if the elements of W
are mutually independent with common variance σ2, then

E
[
Wyy>W>

]
= (Cnσ2 + σ2‖E [y] ‖22)Im.

Thus,

Var
(
x(l)
)
= E

[
W (l−1)y(l−1)y(l−1)>W (l−1)>

]
= (cl−1nl−1σ

2
l−1 + σ2

l−1‖E [y] ‖22)Inl

= nl−1(cl−1 + β2)σ2
l−1Inl

.

Picking cl = nl−1(cl−1 + β2)σ2
l−1 and the claim holds. Therefore,

Var
(
y(l)
)
= α2nl−1(cl−1 + β2)σ2

l−1Inl
= α2nl−1σ

2
l−1

(
Var
(
y(l−1)

)
+ β2Inl

)
.

Next we consider the computation of Var
(

∂cost
∂y(l−1)

)
. Note that

∂cost
∂y(l−1)

=
∂y(l)

∂y(l−1)
∂cost
∂y(l)

.

By definition,

∂y(l)

∂y(l−1)
=

∂x(l)

∂y(l−1)
∂y(l)

∂x(l)
= αW (l−1)

Thus, ∂y(l)

∂y(l−1) is independent to ∂cost
∂y(l) which only depends onW (t) for t = l, . . . , L. Therefore, given

that E
[

∂cost
∂y(L)

]
= 0,

E
[
∂cost
∂y(l−1)

]
= E

[
αW (l−1) ∂cost

∂y(l)

]
= αE

[
W (l−1)

]
E
[
∂cost
∂y(l)

]
= 0.
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We can now compute the variance of ∂cost
∂y(l−1) .

Var
(
∂cost
∂y(l−1)

)
= Var

(
αW (l−1) ∂cost

∂y(l)

)
= α2Var

(
W (l−1) ∂cost

∂y(l)

)
= α2E

[
W (l−1) ∂cost

∂y(l)
∂cost
∂y(l)

>
W (l−1)>

]

Note that by assumptions, ∂cost
∂y(L) is independent to W (t), t = 1, . . . , L− 1, with Var

(
∂cost
∂y(L)

)
= dLI

for some constant dL. Also E
[
∂cost
∂y(l)

]
= 0. Similar to the first part of the proof, given that ∂cost

∂y(L)

is independent to W (t), t = 1, . . . , L − 1, with Var
(

∂cost
∂y(L)

)
= dLI for some constant dL, one can

prove that Var
(

∂cost
∂y(l)

)
= dlI for some constant dl, and thus

Var
(
∂cost
∂y(l−1)

)
= α2(dlnl+‖E

[
∂cost
∂y(l)

]
‖22)σ2

l−1Inl−1
= dlnlσ

2
l−1Inl−1

= α2nlσ
2
l−1Var

(
∂cost
∂y(l)

)
.

Proof of Lemma 1.

E
[
Wyy>W>

]
= E

[
Wyy>W> −WE [y]E [y]

>
W>

]
+ E

[
WE [y]E [y]

>
W>

]
= E

[
WVar (y)W>

]
+ E

[
WE [y]E [y]

>
W>

]
= CE

[
WW>

]
+ E

[
WE [y]E [y]

>
W>

]
.

Here the last equality is due to Var (y) = cIn. For the first term, consider its (i, j)th element

E
[
Wi:W

>
j:

]
=

{
0 if i 6= j

nσ2 if i = j
,

where Wi: is the ith row of W . Similarly for the second term E
[
WE [y]E [y]

>
W>

]
, its (i, j)th

element

E
[
Wi:E [y]E [y]

>
W>j:

]
= E [y]

> E
[
W>i: Wj:

]
E [y] =

{
0 if i 6= j

σ2‖E [y] ‖22 if i = j
.

Therefore,
E
[
Wyy>W>

]
= (Cnσ2 + σ2‖E [y] ‖22)Im.
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