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a b s t r a c t

This work addresses the use of deep neural networks (DNNs) in automatic language identification (LID)
focused on short test utterances. Motivated by their recent success in acoustic modelling for speech
recognition, we adapt DNNs to the problem of identifying the language in a given utterance from the
short-term acoustic features. We show how DNNs are particularly suitable to perform LID in real-time
applications, due to their capacity to emit a language identification posterior at each new frame of the test
utterance. We then analyse different aspects of the system, such as the amount of required training data,
the number of hidden layers, the relevance of contextual information and the effect of the test utterance
duration. Finally, we propose several methods to combine frame-by-frame posteriors. Experiments are
conducted on two different datasets: the public NIST Language Recognition Evaluation 2009 (3 s task)
and a much larger corpus (of 5 million utterances) known as Google 5M LID, obtained from different
Google Services. Reported results show relative improvements of DNNs versus the i-vector system of 40%
in LRE09 3 second task and 76% in Google 5M LID.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic language identification (LID) refers to the process of
automatically determining the language in a given speech sam-
ple (Muthusamy, Barnard, & Cole, 1994). The need for reliable LID
is continuously growing due to several factors. Among them, the
technological trend towards increased human interaction using
hands-free, voice-operated devices and the need to facilitate the
coexistence of a multiplicity of different languages in an increas-
ingly globalized world.

In general, language discriminant information is spread across
different structures or levels of the speech signal, ranging from
low-level, short-term acoustic and spectral features to high-level,
long-term features (i.e. phonotactic, prosodic). However, even
though several high-level approaches are used asmeaningful com-
plementary sources of information (Ferrer, Scheffer, & Shriberg,
2010; Martinez, Lleida, Ortega, & Miguel, 2013; Zissman, 1996),
most LID systems still include or rely on acoustic modelling
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(Gonzalez-Dominguez et al., 2010; Torres-Carrasquillo et al.,
2010), mainly due to their better scalability and computational ef-
ficiency.

Indeed, computational cost plays an important role, as LID sys-
tems commonly act as a pre-processing stage for either machine
systems (i.e. multilingual speech processing systems) or human
listeners (i.e. call routing to a proper human operator) (Li, Ma,
& Lee, 2013). Therefore, accurate and efficient behaviour in real-
time applications is often essential, for example, when used for
emergency call routing, where the response time of a fluent na-
tive operator is critical (Ambikairajah, Li,Wang, Yin, & Sethu, 2011;
Muthusamy et al., 1994). In such situations, the use of high-level
speech information may be prohibitive, as it often requires run-
ning one speech/phonetic recognizer per target language (Zissman
&Berkling, 2001). Lightweight LID systems are especially necessary
in caseswhere the application requires an implementation embed-
ded in a portable device.

Driven by recent developments in speaker verification, the cur-
rent state of the art in acoustic LID systems involves using i-vector
front-end features followed by diverse classification mechanisms
that compensate speaker and session variabilities (Brummer et al.,
2012; Li et al., 2013; Sturim et al., 2011). The i-vector is a com-
pact representation (typically from 400 to 600 dimensions) of a
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whole utterance, derived as a point estimate of the latent variables
in a factor analysis model (Dehak, Torres-Carrasquillo, Reynolds,
& Dehak, 2011; Kenny, Oullet, Dehak, Gupta, & Dumouchel, 2008).
However, while proven to be successful in a variety of scenarios,
i-vector-based approaches suffer from twomajor drawbackswhen
coping with real-time applications. First, the i-vector is a point
estimate and its robustness quickly degrades as the amount of
data used to derive it decreases. Note that the smaller the amount
of data, the larger the variance of the posterior probability dis-
tribution of the latent variables, and thus, the larger the i-vector
uncertainty. Second, in real-time applications, most of the costs as-
sociated with i-vector computation occur after completion of the
utterance, which introduces an undesirable latency.

Motivated by the prominence of deep neural networks (DNNs),
which surpass the performance of the previous dominant para-
digm, Gaussian mixture models (GMMs), in diverse and challeng-
ing machine learning applications – including acoustic modelling
(Hinton et al., 2012;Mohamed, Dahl, & Hinton, 2012), visual object
recognition (Ciresan, Meier, Gambardella, & Schmidhuber, 2010),
and many others (Yu & Deng, 2011) – we previously introduced
a successful LID system based on DNNs in Lopez-Moreno et al.
(2014). Unlike previous works on using shallow or convolutional
neural networks for small LID tasks (Cole, Inouye, Muthusamy,
& Gopalakrishnan, 1989; Leena, Srinivasa Rao, & Yegnanarayana,
2005; Montavon, 2009), this was, to the best of our knowledge,
the first time that a DNN scheme was applied at a large scale
for LID and benchmarked against alternative state-of-the-art ap-
proaches. Evaluated using two different datasets—the NIST LRE
2009 (3 s task) and Google 5M LID—this scheme significantly out-
performed several i-vector-based state-of-the-art systems (Lopez-
Moreno et al., 2014).

In the current study, we explore different aspects that affect
DNN performance, with a special focus on very short utterances
and real-time applications.We believe that the DNN-based system
is a suitable candidate for this kind of application, as it could
potentially generate decisions at each processed frame of the test
speech segment, typically every 10 ms. Through this study, we
assess the influence of several factors on the performance, namely:
(a) the amount of required training data, (b) the topology of the
network, (c) the importance of including the temporal context,
and (d) the test utterance duration. We also propose several blind
techniques to combine frame-by-frame posteriors obtained from
the DNN to get identification decisions.

We conduct the experiments using the following LID datasets:
a dataset built from Google data, hereafter, Google 5M LID corpus
and the NIST Language Recognition Evaluation 2009 (LRE’09).
First, by means of the Google 5M LID corpus, we evaluate the
performance in a real application scenario. Second, we check if the
same behaviour is observed in a familiar and standard evaluation
framework for the LID community. In both cases, we focus on short
test utterances (up to 3 s).

The rest of this paper is organized into the following sections.
Section 2 defines a reference system based on i-vectors. The
proposed DNN system is presented in Section 3. The experimental
protocol and datasets are described in Section 4. Next, we examine
the behaviour of our scheme over a range of configuration
parameters in both the task and the neural network topology.
Finally, Sections 6 and 7 are devoted to presenting the conclusions
of the study and potential future work.

2. Baseline system: i-vector

Currently, most acoustic approaches to perform LID rely on
i-vector technology (Dehak, Kenny, Dehak, Dumouchel, & Ouellet,
2011). All such approaches, while sharing i-vectors as a feature
representation, differ in the type of classifier used to perform the
final language identification (Martinez, Plchot, Burget, Glembek,
& Matejka, 2011). In the rest of this section we describe: (a) the
i-vector extraction procedure, (b) the i-vector classifier used in
this study, and (c) the configuration details of our baseline i-vector
system. This system will serve us as the baseline system.

2.1. I-vector extraction

Based on the MAP adaptation approach in a GMM framework
(Reynolds, 1995), utterances in language or speaker recognition
are typically represented by the accumulated zero- and centred
first-order Baum–Welch statistics,N and F , respectively, computed
from aUniversal BackgroundModel (UBM) λ. For the UBMmixture
m ∈ 1, . . . , C , withmean,µm, the corresponding zero- and centred
first-order statistics are aggregated over all frames of the utterance
as

Nm =


t

p(m|ot , λ) (1)

Fm =


t

p(m|ot , λ)(ot − µm), (2)

where p(m|ot , λ) is the Gaussian occupation probability for the
mixture m given the spectral feature observation ot ∈ ℜ

D at
time t .

The total variability model, hereafter TV, can be seen as a clas-
sical FA generative model (Bishop, 2007), with observed vari-
ables given by the supervector (CD × 1) of stacked statistics F =

{F1, F2, . . . , FC }. In the TV model, the vector of hidden variables
w ∈ ℜ

L is known as the utterance i-vector. Observed and hidden
variables are related by the rectangular low rankmatrix T ∈ ℜ

CD×L

N−1F = Tw, (3)

where the zero-order statistics N are represented by a block di-
agonal matrix ∈ ℜ

CD×CD, with C diagonal D × D blocks. The mth
component block is the matrix NmI(D×D). Given the imposed Gaus-
sian distributions of p(w) and p(F |w), it can be seen that the mean
of the posterior p(w|F) is given by

w = (I + T tΣ−1NT )−1T tΣ−1F , (4)

where Σ ∈ ℜ
CD×CD is the diagonal covariance matrix of F . The

TV model is thus a data driven model with parameters {λ, T , Σ}.
Kenny et al. (2008) provides a more detailed explanation of the
derivation of these parameters, using the EM algorithm.

2.2. Classification

Since T constrains all the variabilities (i.e. language, speaker,
session), and it is shared for all the language models/excerpts, the
i-vectors,w, can be seen as a new input feature to classify. Further,
several classifiers—either discriminative (i.e. Logistic Regression)
or generative (i.e. the Gaussian classifier and linear discriminant
analysis)—can be used to perform classification (Martinez et al.,
2011). In this study, we utilized LDA, followed by cosine distance
(LDA_CS), as the classifier.

Even though using a more sophisticated classifier (Lopez-
Moreno et al., 2014) would have resulted in slightly increased
performance, we chose the LDA_CS considering the trade-off
between performance and computational time efficiency. In this
framework, the similarity measure (score) of the two given
i-vectors, w1 and w2, is obtained as

Sw1,w2 =
(Atw1)(Atw2)

√
(Atw1)(Atw1)

√
(Atw2)(Atw2)

(5)

where A is the LDA matrix.
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Fig. 1. DNN network topology.

2.3. Feature extraction and configuration parameters

As input features for this study we used perceptual linear
predictive (PLP) coefficients (Hermansky, 1990). In particular, 13
PLP coefficients augmented with delta and delta–delta features (39
dimensions total) were extracted with a 10 ms frame rate over
25 ms long windows. From those features, we built a Universal
Background Model of 1024 components. The total variability
matrix was trained by using PCA and a posterior refinement of
10 EM iterations (Dehak, Kenny et al., 2011), keeping just the top
400 eigenvectors.We then derived the i-vectors using the standard
methodology presented in Section 2.1. In addition, we filtered out
silence frames by using an energy-based voice activity detector.

3. DNN as a language identification system

Recent findings in the field of speech recognition have shown
that significant accuracy improvements over classical GMM
schemes can be achieved through the use of deep neural networks,
either to generate GMM features or to directly estimate acoustic
model scores. Among the most important advantages of DNNs is
their multilevel distributed representation of the input (Hinton
et al., 2012). This fact makes the DNN an exponentially more
compact model than GMMs. In addition DNNs do not require
detailed assumptions about the input data distribution (Mohamed,
Hinton, & Penn, 2012) and have proven successful in exploiting
large amounts of data, reaching more robust models without
lapsing into overtraining. All of these factors motivate the use of
DNN in language identification. The rest of this section describes
the architecture and the practical implementation of the DNN
system.

3.1. Architecture

The DNN used in this work is a fully-connected feed-forward
neural network with hidden units implemented as rectified linear
units (ReLUs). Thus, an input at level j, xj, is mapped to its
corresponding activation yj (input of the layer above) as

yj = ReLU(xj) = max(0, xj) (6)

xj = bj +


i

wijyi (7)
where i is an index over the units of the layer below and bj is the
bias of the unit j.

The output layer is then configured as a softmax, where hidden
units map input xj to a class probability pj in the form

pj =
exp(xj)
l
exp(xl)

(8)

where l is an index over all the classes.
As a cost function for backpropagating gradients in the training

stage, we use the cross-entropy function defined as

C = −


j

tj log pj (9)

where tj represents the target probability of the class j for the
current evaluated example, taking a value of either 1 (true class)
or 0 (false class).

3.2. Implementing DNN for language identification

From the conceptual architecture explained above, we built
a language identification system to work at the frame level as
follows.

As the input of the net we used the same features as the i-vector
baseline system (39 PLP). Specifically, the input layer was fed with
21 frames formed by stacking the current processed frame and its
±10 left/right neighbours. Thus, the input layer comprised a total
number of 819 (21 × 39) visible units, v.

On top of the input layer, we stacked a total number of Nhl (8)
hidden layers, each containing h (2560) units. Then, we added the
softmax layer, whose dimension (s) corresponds to the number of
target languages (NL) plus one extra output for the out-of-set (OOS)
languages. This OOS class, devoted to non-known test languages
not seen in training time, could in future allow us to use the system
in open-set identification scenarios. Overall, the net was defined
by a total of w free parameters (weights + bias), w = (v + 1)h +

(Nhl −1)(h+1)h+ (h+1)s(∼48M). The complete topology of the
network is depicted in Fig. 1.

Regarding the training procedure, we used asynchronous
stochastic gradient descent within the DistBelief framework (Dean
et al., 2012), a software framework that uses computing clusters
with thousands ofmachines to train largemodels. The learning rate
and minibatch size were fixed to 0.001 and 200 samples.1

Note that the presented architecture works at the frame level,
meaning that each single frame (plus its corresponding context)
is fed-forward through the network, obtaining a class posterior
probability for all of the target languages. This fact makes the
DNNs particularly suitable for real-time applications since, unlike
other approaches (i.e. i-vectors), we can potentially make a
decision about the language at each new frame. Indeed, at each
frame, we can combine the evidence from past frames to get a
single similarity score between the test utterance and the target
languages. A simple way of doing this combination is to assume
that frames are independent and multiply the posterior estimates
of the last layer. The score sl for the language l of a given test
utterance is computed by multiplying the output probabilities pl
obtained for all its frames, or equivalently, accumulating the logs as

sl =
1
N

N
t=1

log p(Ll|xt , θ) (10)

where p(Ll|xt , θ) represents the class probability output for the
language l corresponding to the input example at time t , xt by using
the DNN defined by parameters θ .

1 Wedefine sample as the input of the DNN: the feature representation of a single
frame besides those from its adjacent frames forming the context.
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Table 1
List of the Google 5M LID (above) and LRE’09 (below) languages considered.

Locale/Abbrev. Language

Google 5M

ar-EG Arabic (Egypt)
ar-GULF Arabic (Persian Gulf)
ar-LEVANT Arabic (Levant)
bg-BG Bulgarian
cs-CZ Czech
de-DE German
en-GB English (United Kingdom)
en-IN English (India)
en-US English (USA)
en-ZA English (South Africa)
es-419 Spanish (Latin America/Caribbean)
es-AR Spanish (Argentina)
es-ES Spanish (Spain)
fi-FI Finish
fr-FR French
he-IL Hebrew (Israel)
hu-HU Hungarian
id-ID Indonesian
it-IT Italian
ja-JP Japanese
ko-KR Korean (South Korea)
ms-MY Malay
nl-NL Dutch
pt-BR Portuguese (Brazilian)
pt-PT Portuguese (Portugal)
ro-RO Romanian
ru-RU Russian
sk-SK Slovak
sr-RS Serbian
sv-SE Sweden
tr-TR Turkish
zh-cmn-Hans-CN Chinese (Mandarin)
zh-cmn-Hant-TW Chinese (Taiwan)
zh-yue-hant-HK Chinese (Cantonese)

LRE’09

en English (USA)
es Spanish (Latin America/Caribbean)
fa Farsi
fr French
ps Pashto
ru Russian
ur Urdu
zh Chinese (Mandarin)

Table 2
Data description of the Google 5M LID and LRE09 subcorpus.

Database #NL Train (h) Test (#files) Test length
(avg. on s)

Google 5M 34 2975 51000 4.2
LRE09_VOA_3s 8 1600 2916 3
LRE09_VOA_realtime 8 1600 11276 (0.1 s–3 s)

4. Datasets and evaluation metrics

We conducted experiments on two different databases follow-
ing the standard protocol provided by NIST in LRE 2009 (NIST,
2009). Particularly, we used the LRE’09 corpus and a corpus gen-
erated from Google Voice services. This followed a two-fold goal:
first, to evaluate the proposed methods with a large collection of
real application data, and second, to provide a benchmark compa-
rablewith other relatedworks in the area by using thewell-known
LRE’09 framework.

4.1. Databases

4.1.1. Google 5M LID corpus
We generated the Google 5M LID corpus dataset by randomly

picking anonymized queries from several Google speech recogni-
Fig. 2. Histograms of durations of the Google 5M LID test utterances. Original
speech signals (above) and after voice activity detection (below).

tion services such as Voice Search or the Speech Android API. Fol-
lowing the user’s phone Voice Search language settings, we la-
belled a total of ∼5 million utterances, 150 k utterances by 34
different locales (25 languages + 9 dialects) yielding ∼87,5 h of
speech per language and a total of ∼2975 h. A held-out test set of
1 k utterances per language was created while the remainder was
used for training and development. Involved languages and data
description are presented in Tables 1 and 2 respectively.

An automatic speech recognition system was used to discard
non-speech queries. Selected queries ranged from 1 up to 10 s in
duration with average speech content of 2.1 s. Fig. 2 shows the
duration distribution before and after doing this activity detection
process.

Privacy issues do not allow Google to link the user identity with
the spoken utterance and therefore, determining the exact number
of speakers involved in this corpus is not possible. However, it is
reasonable to consider that the total number of speakers is very
large.

4.1.2. Language recognition evaluation 2009 dataset
The LRE evaluation in 2009 included, for the first time, data

coming from two different audio sources. Besides Conversational
Telephone Speech (CTS), used in the previous evaluations,
telephone speech from broadcast news was used for both training
and test purposes. Broadcast data were obtained via an automatic
acquisition system from ‘‘Voice of America’’ news (VOA) where
telephone and non-telephone speech are mixed.

Due to the large disparity on training material for every lan-
guage (from ∼10 to ∼950 h), out of the 40 initial target languages
(Liu, Zhang, & Hansen, 2012) we selected 8 representative lan-
guages for which up to 200 h of audio were available: US English
(en), Spanish (es), Dari (fa), French (fr), Pashto (ps), Russian (ru),
Urdu (ur), Chinese Mandarin (zh) (Table 1). Further, to avoid mis-
leading result interpretation due to the unbalancedmix of CTS and
VOA, all the data considered in this dataset were part of VOA.

As test material in LRE’09, we used a subset of the NIST LRE
2009 3 s condition evaluation set (as for training, we also discarded
CTS test segments), yielding a total of 2916 test segments of the 8
selected languages. Thatmakes a total of 23328 trials.We refer this
test dataset as LRE09_VOA_3s_test. For evaluating performance
in real-time conditions, we used the VOA test segments for all
the LRE’09 conditions (3 s, 10 s, 30 s) with at least 3 s of speech
(according to our voice activity detector) that made a total of
11276 files. Then we cut these recordings to build different
duration subsets ranging from 0.1 to 3 s of speech. Specifically, we
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Table 3
System performance (EER %) comparison per language on LRE09_VOA_3s_test. The I-vector baseline system vs. the DNN_8layers_200h system.

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

Iv_200h 17.22 10.92 20.03 15.30 19.98 14.87 18.74 10.09 15.89
DNN_8layers_200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58
Fig. 3. System performance (EER %) comparison per language on Google 5M LID corpus. The I-vector baseline system vs. the DNN_8layers_200h system.
came up with 8 datasets of 11276 files with durations: 0.1 s, 0.2 s,
0.5 s, 1 s, 1.5 s, 2.0 s, 2.5 s, and 3.0 s. We refer those test datasets as
the LRE09_VOA_realtime_test benchmark.

4.2. Evaluation metrics

In order to assess the performance we used the accuracy and
equal error rate (EER)2 metrics. Language identification rates are
measured in terms of accuracy, understanding this as the % of
correctly identified trialswhenmakinghard decisions (by selecting
the top scored language) language detection rates are measured in
terms of per-language EER and for the sake of claritywe do not deal
with the problem of setting optimal thresholds (calibration) as we
previously did in Lopez-Moreno et al. (2014).

5. Experimental results

5.1. Global performance

We start our study by comparing the performance of the
proposed DNN scheme with the baseline i-vector system on the
LRE09_VOA_3s_test corpus. Table 3 summarizes this comparison
in terms of EER. Results show how the DNN approach largely
outperforms the i-vector system, obtaining up to a ∼40% relative
improvement. An even larger improvement is obtained on the
Google 5M corpus, where we found an average relative gain of
∼76% (see Fig. 3). Those results are especially remarkable since
they are found on short test utterances and demonstrate the ability
of the DNN to exploit discriminative information in large datasets.

It is also worth analysing the errors made by the DNN system as
a function of the similarity of the different languages. We present
in Fig. 7 the confusion matrix obtained using the DNN system on
the Google 5M LID corpus. Confusion submatrices around dialects
(i.e. ar-EG/ar-GULF/ar-LEVANT) illustrate the difficulty of dialect
identification from spectral features in short utterances (Torres-
Carrasquillo, Sturim, Reynolds, & McCree, 2008). These results

2 EER is the point on ROC or DET curve where false acceptance and true reject
rates are equal.
suggest that exploiting just acoustic information might be not
enough to reach accurate identificationwhen dealingwith dialects
(Baker, Eddington, & Nay, 2009; Biadsy, 2011; Liu, Lei, & Hansen,
2010).

5.2. Number of hidden layers and training material

In this section, we evaluate two related aspects when training
a DNN: the number of hidden layers and the amount of training
material used. On the one hand, we want to exploit the ability
showed by DNNs to improve the recognition performance while
increasing the training, avoiding overfitting. On the other hand,
we aim to get the lightest architecture possible without losing
accuracy.

We started by fixing the available training material to its
maximum in LRE’09 (200 h per language) and then reducing
the number of hidden layers from 8 (DNN_8layers_200h) to 4
(DNN_4layers_200h) and 2 (DNN_2layers_200h). Table 4 summa-
rizes those results. The net with 4 hidden layers seems to be
more discriminative than the 2 hidden layers, and more interest-
ingly, than the one with 8 hidden layers. In particular, on average,
the DNN_4layers_200h outperforms by ∼8% in terms of EER the
DNN_8layers_200h system, using half as many parameters.

As a further step, we swept the number of hours used per lan-
guage from 1 to 200 h for the three nets. Fig. 4 shows the % accu-
racy as a function of the training hours per language. As expected,
the bigger the amount of training data, the better the performance.
However, the slope of this gain degrades when reaching 100 h per
language. Indeed, from the 2 layer system, increasing the training
material incurs in a minor degradation mostly due to underfitting.
Again, it is clear from the results the need for a convenient tradeoff
between the training data and number of parameters to optimize.
In particular, our best configuration contains∼21Mparameters for
∼648M training samples.

5.3. Real-time identification

Taking now as reference the net with best performance so far
(DNN_4_200h) we explored the performance degradation when
limiting the test duration. The goal is to gain some insight about
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Table 4
Effect of using different numbers of hidden layers. System performance (EER %) per language on LRE09_VOA_test_3s.

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

DNN_2layers_200h 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
DNN_4layers_200h 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79
DNN_8layers_200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58
Table 5
Effect of using different left/right input contexts for the DNN_4layers_200h system. System performance (EER %) on the LRE09_VOA_realtime_test (3 s).

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

No context 19.07 9.65 24.82 13.17 21.64 14.28 19.39 12.38 16.80
±10 8.42 3.62 15.89 5.46 14.54 6.31 10.05 3.47 8.47
±20 7.71 3.88 15.49 6.11 12.90 6.09 10.50 4.00 8.33
±30 9.44 4.53 16.24 7.95 14.40 7.96 12.07 5.23 9.72
±40 12.05 5.08 17.41 9.71 15.47 9.14 13.10 6.27 11.03
±50 9.85 5.71 19.26 8.80 14.54 7.76 13.37 6.51 10.72
Fig. 4. DNN system performance (% accuracy) in function of the training time per
language and the number of hidden layers. Results on LRE09_VOA_3s_test.

how long a test utterance must be to consider the identification
accurate, a main concern in real-time applications.

Fig. 5 shows the average accuracy as a function of the test
durations, for both test corpus LRE09_VOA_realtime_test and
Google 5M LID. We highlight here two main points. Notice first
that up to 0.5 s of speech (according to our voice activity detection)
the identification accuracy is very poor (rates under 50% accuracy).
Very quick decisions can lead systems to a bad user experience
in real-time applications. Second, as expected, the larger the test
duration, the better the performance. However, this practically
saturates after 2 s. This suggests that a decision can be taken at this
point without significant loss of accuracy even when we increase
the number of target languages from 9 to 34.

A more detailed analysis per language can be seen in Ta-
ble 7 for all the 34 languages involved in the Google 5M LID
corpus, where we show that the previous conclusion holds true
also for each individual language. Confusion matrices on the
LRE09_VOA_realtime_test are also collected in Figs. A.8–A.11.

5.4. Temporal context

So far we have been using a fixed right/left context of ±10
frames respectively. That is, the input of our network, asmentioned
in Section 3, is formed by stacking the features of every framewith
its corresponding 10 to the left and 10 to the right neighbours.
We explore in this section the effect of including a shorter/wider
context for language identification.

Themotivation behind using temporal information from a large
number of frames lies in the idea of incorporating additional
high-level information (i.e. phonetic, phonotactic and prosodic
Fig. 5. DNN_4layers_200h system performance (% accuracy) in function of the test
utterance duration. Results on LRE09_VOA_realtime_3s.

information). This idea has been largely and successfully ex-
ploited in language identification by using long-term phonotactic/
prosodic tokenizations (Ferrer et al., 2010; Reynolds et al., 2003)
or, in acoustic approaches, by using shifted-delta-cepstral features
(Torres-Carrasquillo, Singer, Kohler, & Deller, 2002).

We modify the input of the network by stacking each frame
with a symmetric context that ranges from 0 to 50 left and right
neighbour frames; that is, we sweep from a context-free scheme
to a maximum context that spans 0.5 s to the left and 0.5 s to the
right (a total of 1 s context).

Table 5 summarizes the obtained results on the LRE09_VOA_
realtime_test (3 s subcorpus) using the DNN_4_200h network. The
importance of the context is apparent from first two rows. We
observe a relative improvement of ∼49% from the ±10 context
scheme with respect to the context-free one. We find the lowest
EER when using ±20 frames of context. After this value the EER
increases. This behaviour can be explained by understanding that
as we demand our net to learn more ‘high-level’ rich features, we
are also increasing the size of the input, therefore forcing the net
to learn more complex features from the same amount of data.
Fig. 6 collectsthe top 10 filters for a given minibatch (those which
produce highest activations in the minibatch) extracted from the
first hidden layer for the DNN_4_200h network. The distribution
of those weights evidences how the DNN is using the context
information.

Although thenumber of parameters of the input layer is affected
by the size of the contextual window, the input layer represents
less than the 25% of the model size. Thus, it seems that DNNs
can lead to better modelling of the contextual information than
competing approaches, such as GMM-based systems, which are
traditionallymore affected by the curse of dimensionality. Note that
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Table 6
Comparison of different frame combination schemes for the DNN_4layers_200h. System performance (EER %) per language. Results on LRE09_VOA_3s_test.

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

Product 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79
Voting 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
Entropy 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58
Fig. 6. Visualization of top 10 filters (those which produce highest activations in the given minibatch) of the first hidden layer using a ±10 context. Each filter is composed
of 21 rows (number of frames stacked as input) and 39 columns (feature dimension).
Fig. 7. Confusion matrix obtained by evaluating the DNN_8_200h system on the Google 5M LID corpus.



56 J. Gonzalez-Dominguez et al. / Neural Networks 64 (2015) 49–58
Table 7
System performance (accuracy %) by language and test utterance duration on Google 5M Database.

% Accuracy Test utterance duration (s)
Locale Language 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0

ar-EG Arabic (Egypt) 12 14 38 41 52 56 58 57
ar-GULF Arabic (Persian) 19 22 46 53 61 64 69 68
ar-LEVANT Arabic (Levant) 43 51 54 48 65 64 61 62
bg-BG Bulgarian 7 11 38 51 65 64 68 72
cs-CZ Czech 2 6 45 69 71 75 79 81
de-DE German 18 27 62 72 84 88 87 89
en-GB English (United) 4 12 31 39 49 54 54 54
en-IN English (India) 27 30 56 63 73 74 76 78
en-US English (USA) 22 29 62 70 85 87 89 91
en-ZA English (South) 4 7 34 45 46 51 56 57
es-419 Spanish (Latin) 6 8 25 41 47 50 52 55
es-AR Spanish (Argentina) 6 8 35 50 53 56 58 61
es-ES Spanish (Spain) 5 9 48 54 67 70 72 73
fi-FI Finish 14 23 55 75 76 80 82 82
fr-FR French 14 25 69 83 90 93 94 95
he-IL Hebrew (Israel) 4 10 46 60 60 67 68 70
hu-HU Hungarian 8 16 48 71 72 80 82 82
id-ID Indonesian 13 21 45 62 69 72 75 76
it-IT Italian 8 13 42 58 75 78 80 81
ja-JP Japanese 18 25 68 87 89 91 94 95
ko-KR Korean (South) 16 25 68 91 89 91 92 92
ms-MY Malay 17 25 44 59 63 70 72 72
nl-NL Dutch 6 12 56 68 76 80 80 81
pt-BR Portuguese (Brazilian) 11 18 47 74 74 78 80 81
pt-PT Portuguese (Portugal) 6 8 28 53 42 43 48 49
ro-RO Romanian 7 12 34 43 56 61 64 66
ru-RU Russian 5 11 52 70 83 85 85 85
sk-SK Slovak 10 13 30 40 48 51 55 58
sr-RS Serbian 6 9 35 54 55 59 60 62
sv-SE Sweden 10 16 42 62 65 70 73 71
tr-TR Turkish 5 10 55 78 79 82 83 85
zh-cmn-Hans-CN Chinese (Mandarin) 12 16 54 76 75 76 80 82
zh-cmn-Hant-TW Chinese (Taiwan) 12 22 63 78 80 83 83 85
zh-yue-hant-HK Chinese (Cantonese) 15 25 68 81 88 91 90 91
the relative gains reported in this analysis (∼50%) surpass previous
attempts reported in the literature in including contextual
information using the GMM paradigm (Torres-Carrasquillo et al.,
2002). We refer also to Li and Narayanan (2014) for a extensive
comparison of different features in language identification over an
i-vector-based framework.

5.5. Frame-by-frame posteriors combination

One of the features that make DNNs particularly suitable for
real-time applications is their ability to generate frame-by-frame
posteriors. Indeed we can derive decisions about the language
identification at each frame. Here we aim to study how we can
combine frame posteriors into a single utterance-level score.

Probably the most standard way to perform this combination
is assuming frame independence and using the product rule (see
Section 3). That is, simply compute the product of the posteriors
frame-by-frame as the new single score vector. Another common
and simple approach used in the literature is plurality voting,
where, at each frame, the language associated with the highest
posterior receives a single vote while the rest receive none. The
voting scheme aims to control the negative effect of outlier scores.
The score for a given language l, sl, is then computed by counting
the received votes over all the frames as

sl =

N
t=1

δ(p(Ll|xt , θ)), (11)

with δ function defined as

δ(p(Ll|xt , θ))


1, if l = argmax

l
(p(Ll|xt , θ))

0, otherwise.
(12)
A more interesting approach, among blind techniques (no need
for training), is to weight the posteriors of every frame as a
function of the entropy of its posterior distribution. The idea here
is to penalize those frames whose distribution of posteriors across
the set of languages tends to be uniform (high entropy). This
approach was successfully applied in Misra, Bourlard, and Tyagi
(2003), resulting in a performance improvement when working
withmismatched training and test datasets. The resulting score for
language l, sl, is computed as

sl =

N
t=1

log


1
ht

p(Ll|xt , θ)


(13)

where the weight for frame t is the inverse of its entropy

ht = −

N
l=1

p(Ll|xt , θ) log2 p(Ll|xt , θ). (14)

Table 6 compares these three different combination schemes:
product, voting and entropy on the LRE09_VOA_3s_test corpus.
Results show a better performance of the simple product rule
compared to the other approaches, with voting the worst choice.
This result suggests that making binary decisions at a frame level
leads to a performance degradation. Although the entropy scheme
does not help in this scenario, it should be considered when
working with more noisy environments.

6. Conclusion

In this work, we present a detailed analysis of the use of deep
neural networks (DNNs) for automatic language identification
(LID) of short utterances. Guided by the success of DNNs for
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acoustic modelling in speech recognition, we explore the capacity
of DNNs to learn language information embedded in speech
signals.

Through this study, we also explore the limits of the proposed
scheme for real-time applications, evaluating the accuracy of the
system when using very short test utterances (≤3 s). We find,
for our proposed DNN scheme, that while more than 0.5 s is
needed to obtain over 50% accuracy rates, 2 s are enough to
reach accuracy rates of over 90%. Further, we experiment with the
amount of training material, the number of hidden layers and the
combination of frame posteriors. We also analyse the relevance of
including the temporal context, which is critical to achieving high
performance in LID.

Results using NIST LRE 2009 (8 languages selected) and Google
5M LID datasets (25 languages + 9 dialects) demonstrate that
DNNs outperform current state-of-art i-vector-based approaches
when dealing with short test durations. Finally, we demonstrated
that using a frame-by-frame approach, DNNs can be successful
applied for real-time applications.

7. Future work

We identified several areas where further investigation is
needed. Among them, establishing a more appropriate combina-
tion of frame posteriors obtained in DNNs; exploring different fu-
sions among DNNs and i-vector systems (Saon, Soltau, Nahamoo,
& Picheny, 2013); and dealing with unbalanced training data. Note
that even though we proposed different ways of combining poste-
riors, all of them are blind techniques (no need for training). This
fact is due to we focused on real-time applications and simple ap-
proaches. However, other data-driven methods could be more ap-
propriate for combining posteriors.

Further other neural network architectures should also be
explored. For instance, recurrent neural networks might be an
elegant solution to incorporate contextual information. Also,
convolutional neural networks might help to reduce the number
of parameters of our model.

Another promising approach is the use of the activations of
the last hidden layer as bottleneck features. Then, i-vector-based
systems or another classification architecture could be trained over
those bottleneck features, rather than over classical features, such
as PLP or MFCC.

Appendix. Extended results

Fig. A.8. DNN_4layers_200h confusion matrix on LRE’09 (0.5 s test).
Fig. A.9. DNN_4layers_200h confusion matrix on LRE’09 (1 s test).

Fig. A.10. DNN_4layers_200h confusion matrix on LRE’09 (2 s test).

Fig. A.11. DNN_4layers_200h confusion matrix on LRE’09 (3 s test).
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