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ABST RACT 

Deep neural networks (DNNs) are widely used for acoustic model­
ing in automatic speech recognition (ASR), since they greatly out­
perform legacy Gaussian mixture model-based systems. However, 
the levels of performance achieved by current DNN-based systems 
remain far too low in many tasks, e.g. when the training and test­
ing acoustic contexts differ due to ambient noise, reverberation or 
speaker variability. Consequently, research on DNN adaptation has 
recently attracted much interest. In this paper, we present a novel ap­
proach for the fast adaptation of a DNN-based acoustic model to the 
acoustic context. We introduce a context adaptive DNN with one or 
several layers depending on external factors that represent the acous­
tic conditions. This is realized by introducing a factorized layer that 
uses a different set of parameters to process each class of factors. 
The output of the factorized layer is then obtained by weighted aver­
aging over the contribution of the different factor classes, given pos­
teriors over the factor classes. This paper introduces the concept of 
context adaptive DNN and describes preliminary experiments with 
the TIMIT phoneme recognition task showing consistent improve­
ment with the proposed approach. 

Index Terms- Automatic speech recognition, Deep neural net­
works, Acoustic model adaptation, Context adaptive DNN, Factor­
ized DNN 

1. INT RODUCTION 

Recently, the introduction of deep neural network (DNN) based 
acoustic modeling has greatly improved the performance of auto­
matic speech recognition (ASR) for various tasks [1]. However, 
there still remains a great performance gap between top perfor­
mances obtained under well-controlled conditions and performances 
achieved in the presence of noise, reverberation or speaker mis­
match. 

Acoustic model adaptation is usually used to adjust the acoustic 
model to the testing conditions. For example, maximum likelihood 
linear regression (MLLR) has been shown to be very effective for 
speaker or environment adaptation when employing legacy Gaussian 
mixture model hidden Markov model (GMM-HMM) based ASR 
systems [2]. Research on adaptation for DNN-HMM acoustic mod­
els has attracted a lot of attention [3-18]. However, there is still 
no consensus on how to perform efficient adaptation in the con­
text of DNN-based acoustic models. Several approaches for DNN 
adaptation have been investigated, including input feature normal­
ization [4-8], direct adaptation of the DNN parameters [9-14, 19] 
and the use of rich input features that explicitly characterize acoustic 
conditions such as i-vectors or noise features [15-18]. 

978-1-4673-6997-8/15/$31.00 ©2015 IEEE 4535 

In this paper, we propose a different approach that uses a DNN 
whose parameters are directly dependent on factors that characterize 
the acoustic context. We refer to this network as context adaptive 
DNN. Note that here the term context denotes the long-term acous­
tic conditions that are typically defined on an utterance level, e.g. 
speakers or acoustic environments. The structure of a context adap­
tive DNN is realized by dividing one or several hidden layers of the 
network into a set of parallel sub-layers each associated with a dif­
ferent factor class. By an abuse of terminology, we call such a layer 
a factorized layer. The input of a factorized layer is the output acti­
vation of the previous layer as with conventional DNN. The input is 
processed with each sub-layer in parallel. The output of the factor­
ized layer is then obtained by the weighted averaging of the output of 
each sub-layer, weighted by the posterior probabilities of the factor 
classes. During training, the parameters of the factorized layer are 
trained in a soft manner, using training data and the associated factor 
class posteriors. During testing, a DNN adapted to the test condi­
tions can be obtained given the class posteriors, by the weighted av­
eraging of the parameters of the factorized layer. Consequently, this 
makes fast adaptation possible even when there are many parame­
ters to adapt. Moreover, the factors can be estimated blindly during 
testing, enabling unsupervised adaptation. 

The topology of the proposed context adaptive DNN is similar 
to that of networks employed for committee machines, which are 
used to combine the outputs of different experts [20, 21]. In particu­
lar, a similar weighted averaging was used for a of mixture of expert 
models that employ a gating network to calculate the weights used 
to combine the outputs of different experts. An equivalent approach 
referred to as disjoint factorized DNN was investigated in relation to 
acoustic model adaptation for ASR [22]. A notable difference be­
tween the proposed context adaptive DNN and the approaches pro­
posed in [20-22] is that instead of using a gating network to obtain 
the posteriors, we use posteriors calculated externally, which enables 
us to represent the long-term acoustic context. 

In this paper, we introduce the concept of context adaptive 
DNNs and detail our implementation. We also provide preliminary 
experimental results for gender adaptation on the TIM IT corpus. 
The proposed approach can perform similarly to a gender dependent 
system, without using prior knowledge about genders. 

The remainder of this paper is as follows. In Section 2, we intro­
duce the proposed context adaptive DNN. Section 3 elaborates on the 
relationship between the proposed approach and previous work on 
DNN adaptation. We then present preliminary experimental results 
using the TIMIT corpus in Section 4. Finally, Section 5 concludes 
the paper and discusses future work directions. 
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2. CONTEXT ADAPTIVE DNN 

2. 1. Overview 

Before introducing the proposed context adaptive DNN. we first re­
view a conventional DNN to introduce the notations used in this pa­
per. Figure I- (a) is a schematic diagram of a conventional DNN. 
To emphasize the differences between a conventional DNN and the 
proposed context adaptive DNN, Fig. I explicitly shows the linear 
transformation and the activation function associated with each hid­
den layer. We use X(i-I) to denote the input of the ith layer of a 
DNN, where by definition x(O) corresponds to the input features or 
input layer. The output of the ith layer is given by, 

XCi) a(z(i)), 
(I) 

where W(i) and b(i) are the weight matrix and bias vector of the 
linear transformation associated with the ith layer, and aO is the 
activation function, which is typically a sigmoid function [23]. 

The proposed context adaptive DNN replaces one or several lay­
ers of the DNN with factorized layers. A factorized layer is realized 
by decomposing the linear transformation of a hidden layer into sub 
transformations each associated with a different factor class. Dur­
ing propagation, the parameters of the factorized layer are obtained 
as the weighted sum of the parameters associated with each factor 
class, weighted by the posterior probabilities of the factor classes. 
The parameters associated with the ith factorized layer can thus be 
expressed as, 

k=1 
K 

= :�":>lOkb(i) k, 
k=1 

(2) 

where W(i) k and b(i) k and O<k are the weight matrix bias vector 
and posterior associated with the kth factor class, respectively, and 
K is the number of factor classes considered. By definition, we have 
L:k O<k = 1. {O<k}k=I . . .  ,K characterize the acoustic context of a 
given utterance, which depends on the task, e.g. the gender, speaker 
or acoustic environment (noise or reverberation) . For example, O<k 
can be obtained as the posteriors derived from speaker or environ­
ment clustering. In this paper we use context posteriors that are con­
stant across an utterance, but the same formulation could be used for 
a context that varies within an utterance. 

We can express the output of the ith factorized layer by pro­
cessing its input by using K parallel sub-layers, followed by the 
weighted averaging of the outputs of each sub-layer before applying 
the activation function, Le., 

K 

Z(i) = LO<kCW(i\X(i-l) + b(i)k). (3) 
k=1 

Although exactly identical to using Eq. (2), this latter interpretation 
makes implementation easier if the O<k values are allowed to vary on 
a frame basis or when training using mini-batches that are random­
ized over acoustic conditions and consequently have a different O<k 
per input feature. 

Figure l- (b) is a schematic diagram of a context adaptive DNN 
with the ith layer replaced by a factorized layer. Note that in prin­
ciple we could factorize any layer or several layers of the network, 
although in the following we will present results obtained when fac­
torizing only a single layer. 
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Fig. 1. Schematic diagram of (a) a conventional DNN and (b) the 

proposed context adaptive DNN with the ith layer replaced by a fac­

torized layer. Note that the dotted boxes are included to emphasize 

intermediate steps in the computation of the output of a hidden layer 

(Le. linear transformation and activation function) and are not actual 

hidden layers. 

2.2. Training procedure 

Let us now briefly describe how to train context adaptive DNNs. The 
parameters of the factorized layers, e £ {Wei) k, b(i) k}, can be 
obtained with the back-propagation algorithm. The implementation 
of the training algorithm requires simple modifications to an existing 
DNN training implementation. In particular, the gradients of the 
factorized layer parameters are given by, 

(4) 



where J(8) is the objective function (typically the cross entropy), 
and 0 is the back-propagated error that is expressed as, 

(5) 

where 8 is the Hadamard product and (J"' (z(i)) is the derivative of the 

activation function w.r.t. z(i). Equation (4) is similar to the expres­
sion of the gradient for a conventional neural network [24] except 
for the introduction of the weighting term ak. Moreover, Eq. (5) is 
identical to the expression for a conventional DNN but z(i) should 
be calculated with Eq. (3) and W(i+1) should be calculated with 
Eq. (2) if layer i + 1 is factorized. 

There are several training strategies that could be used to train 
the proposed context adaptive DNN. One can start from a network 
pre-trained for conventional DNN training (e.g. obtained using re­
stricted Boltzmann machine (RBM) pre-training), and create an ini­
tial factorized layer by duplicating the layer corresponding to the 
factorized layer by the number of factors. However, we found in our 
experiments that better results could be obtained by using a warm­
start approach, where the initial value for the adaptive DNN consists 
of a conventional factor independent DNN trained (I.e. fine-tuned) 
with all the training data. The factorized layer was obtained by dupli­
cating the original layer by the number of factors and the remaining 
layers are kept unchanged. The network is then retrained using a 
small learning rate. Note that all the layers of the network are re­
trained but only the factorized layer becomes context dependent in a 
similar way to the approach described in [13]. 

3. RELATIONSHIP TO P REVIOUS WORK 

The proposed context adaptive DNN shares similarities with other 
approaches to DNN adaptation. Factorized DNNs were investigated 
in [22], where the authors proposed factorizing the last layer of a 
DNN by introducing a weight tensor to combine the DNN output and 
the factors. Our implementation is especially similar to the disjoint 
factorized model proposed in [22]. However, we apply the factor­
ization to the weights and biases of the hidden layers instead of the 
softmax layer, which may be more general as it can be extended to 
any layer of the network. Moreover, another difference is that in [22] 
the same features were used for recognition and for estimating the 
speaker and environment factors. In our case, we use factors esti­
mated in a separate process that enables us to use different features 
that may be better suited to representing the acoustic context. 

The proposed context adaptive DNN is also related to the 
speaker adaptive training approach proposed in [13], where a given 
DNN layer was made speaker dependent during training, while 
maintaining the other layers speaker independent. The speaker 
dependent layer was then retrained in a supervised manner using 
adaptation data of the corresponding speaker. Our approach uses 
posteriors to train the DNN and therefore implements a soft version 
of [13]. Moreover, instead of retraining the speaker dependent layer 
to adapt the DNN to each test speaker, we use posteriors to compute 
the adapted DNN directly. As the posteriors we use can be calcu­
lated blindly on an utterance basis, we can achieve fast unsupervised 
adaptation. We could potentially combine the proposed approach 
with [13] by using a few adaptation utterances to retrain the context 
adaptive DNN to the test conditions. 

Another promising approach for fast unsupervised adaptive 
DNN consists of using rich features obtained by concatenating the 
original input features with additional features representing acous­
tic conditions such as speaker [IS], noise [16] or both [17]. Such 
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approaches are simple to implement and have been shown to be ef­
fective for many tasks [IS, 16]. However, they make it necessary to 
train a network from scratch for a set of rich features. The proposed 
context adaptive DNN employs a different approach for integrating 
acoustic condition information. Moreover, a potential advantage of 
the proposed approach is that we can use an already trained factor 
independent DNN as the initial model, which may speed up the 
training. 

Finally, [12, 18] proposed including additional features in the 
input of intermediate hidden layers [18] or in the last layer [12]. 
However, these approaches require two passes for adaptation (one 
pass to generate labels and one pass to recognize them after adapting 
the DNNs), while the proposed context adaptive DNN operates in a 
single pass. 

4. EXPERIMENTS 

In this section we describe preliminary experiments based on the 
TIMIT continuous phoneme recognition task [25]. In this prelim­
inary experiment we used two factor classes, which therefore cor­
responds to gender adaptation. Note that TIM IT is probably not 
the best corpus with which to demonstrate the potential of the pro­
posed approach as it has already been shown that conventional DNN 
based acoustic models could perform speaker normalization on this 
task [26]. However we used this task as it enabled us to perform 
simple experiments to test our concept. 

4. 1. Settings 

4.1.1. Recognizer configuration 

Our baseline system consists of a DNN-HMM recognizer, trained 
using all the training data. We refer to this system as a gender in­
dependent DNN (GI-DNN). The DNN consists of 6 hidden layers 
with 2048 hidden units per layer and 144 output units. The input 
features consist of MFCC features with delta and acceleration (39 
dimensions in total). We used the II concatenated frames as input 
to the DNN (I.e. 429 input units). As is common practice for DNNs, 
the input features were normalized using mean and variance normal­
ization parameters calculated using the training data set. The DNNs 
were trained with conventional layer-wise pre-training using RBMs 
followed by fine tuning using SGD [23, 27]. For the fine tuning, we 
used an initial learning rate of 0.1, a momentum of 0.9 and a batch 
size of 128. Moreover, the learning rate was gradually decreased 
when the frame accuracy would not improve for a validation set (I.e. 
here the development set). 

In addition to the above GI-DNN, we also trained gender de­
pendent DNNs (GD-DNNs). The GD-DNNs were obtained by re­
training the GI-DNN (warm start) using only male and female data 
respectively. Note that we observed that the performance of this re­
training strategy was superior to that of training GD-DNNs created 
from scratch. We used the same parameters for retraining as for fine 
tuning of GI-DNN except for the learning rate that we set at a smaller 
value of 0.001. We also employed the same retraining strategy to 
train the proposed context adaptive DNNs. 

We used monophone HMMs for all the experiments. For de­
coding, we used a phoneme bigram language model and fixed the 
language model weight at I in all the experiments. The results are 
expressed in terms of the phone error rate (PER) for the development 
(dev) and evaluation (eval) sets. 



Table 1. Phone error rate for TIMIT experiment. The results are 

shown for the baseline gender independent DNN (GI-DNN), gen­

der dependent DNN (GD-DNN), DNN with rich input features (RF­

DNN) and the proposed context adaptive DNN (CA-DNN). The best 

results are highlighted with bold font. 

posteriors dev eval 

GI-DNN - 22.12 % 22.99 % 
GD-DNN - 21.69 % 22.61 % 
RF-DNN wiLDA 21.76 % 22.98 % 
RF-DNN wlo LDA 21.88 % 22.84 % 
CA-DNN wiLDA 21.75 % 22.66 % 
CA-DNN wlo LDA 21.71 % 22.50 % 

4.1.2. Posterior calculation 

In this experiment, the posteriors O<k were obtained from the clus­
tering of i-vectors using GMMs [28]. Here, we deal with two fac­
tor classes and therefore the number of Gaussian components for 
i-vector clustering was set at 2. The i-vectors consisted of 400 com­
ponents. We used two types of posteriors, one obtained by applying 
dimensionality reduction using linear discriminant analysis (LDA) 
before clustering the i-vectors (wi LDA) and one obtained by clus­
tering i-vectors directly (w/o LDA). We used LDA to obtain more 
speaker-discriminant vectors. In that case, we reduced the dimen­
sionality of the i-vectors to 4 using an LDA projection matrix esti­
mated by employing the speaker IDs of the training data to define 
the classes used by LDA. Note that the posteriors obtained without 
LDA are somewhat smoother than those obtained with LDA. The 
latter posteriors tend to take binary values. These two types of pos­
teriors were used to confirm the effect of soft training. 

4.2. Results 

Table I shows the PER the baseline GI-DNN and GD-DNN systems, 
systems using rich input features (RF-DNN) obtained by concatenat­
ing the input features with posteriors and systems using the proposed 
context adaptive DNN (CA-DNN). 

The GI-DNNs performance is comparable to that obtained by 
others on the same task when using the same input features and net­
work topology [23]. The small performance differences may be due 
to minor differences in the training strategy. We observe a small but 
consistent improvement with the GD-DNNs. Note that when using 
GD-DNNs we assume prior knowledge about gender during decod­
ing. The other systems in Table I do not use such prior information. 

Table I also shows the results for rich features (RF-DNN) ac­
quired by concatenating the input features with posterior probabili­
ties obtained with i-vectors processed with and without LDA. This 
is similar in principle to adding i-vectors to the input of DNNs, but 
the dimension of the posteriors is smaller than that usually used for 
i-vectors. In this experiment, we obtained better performance us­
ing the posteriors than with i-vectors directly. We observed a small 
improvement over GI-DNN when using RF-DNN, however the per­
formance did not match that obtained with GD-DNNs. 

The last part of Table I shows the results of the proposed con­
text adaptive DNN (CA-DNN) for the two different types of pos­
teriors (Le. 'wi LDA' and 'wlo LDA'). The results were obtained 
when using a single factorized layer. Table I shows the results for 
the factorized layer that gave the best performance on the develop-
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ment set, Le. the second layer for posteriors with LDA and the third 
layer for posteriors without LDA. Note that similar results could be 
obtained when factorizing another layer or several layers of the net­
work. However, the performance tended to degrade slightly when the 
last layer was factorized. This suggests that some extra layers may 
be needed on top of the factorized layer to compensate for perturba­
tions that may occur when the posteriors observed during testing and 
training differ. 

We observed that CA-DNNs can achieve performance compara­
ble to that of GD-DNNs without using prior knowledge about gen­
der. Both types of posteriors achieve similar performance levels, 
but the use of smoother posteriors obtained without LDA provides 
slightly better performance than when using LDA or GD-DNNs. 
This confirms that the soft training strategy is effective. It is no­
ticeable that we could achieve some performance improvement on 
TIMIT although it is known that DNNs can perform speaker nor­
malization on this task [26]. Note that we confirmed that the perfor­
mance improvement is not due to the increased number of CA-DNN 
parameters. Indeed, a GI-DNN with 7 layers (which has the same 
number of parameters as the CA-DNNs), achieved poorer PERs of 
22.17 % and 23.03 % on the development and evaluation sets, re­
spectively. In addition, we also found that increasing the number of 
units of a given hidden layer did not improve performance. 

We also tested the proposed approach using 4 and 8 factor 
classes to extend the experiment to speaker as well as gender classes. 
The performance with 4 and 8 classes cases was very similar to that 
using 2 classes with a slight degradation with 8 classes. The number 
of model parameters increases with the number of factor classes. 
Consequently, when increasing the number of classes we may need 
more training data to accurately train the parameters of the factorized 
layer. In addition, we should investigate approaches to for reducing 
the number of parameters of the factorized layers when increasing 
the number of classes using e.g. bottleneck layers [II, 29, 30]. 

5. CONCLUSION 

In this paper, we introduced a novel approach for DNN adaptation 
that we called context adaptive DNN. The proposed DNN adapts its 
model parameters using a set of posteriors that describe the acoustic 
context. This enables the rapid unsupervised adaptation of DNNs 
even when the number of parameters is large. The proposed con­
text adaptive DNN was tested for gender adaptation on the TIMIT 
continuous phoneme recognition task. We observed small but con­
sistent improvements using the proposed method. In particular, we 
achieved similar performance to that of gender dependent DNNs. 
These are preliminary results for a simple task. We expect to observe 
larger gains for tasks with more training data or when dealing with 
other acoustic conditions such as noise or reverberation that may be 
more difficult to represent by a conventional DNN [19, 31]. These 
investigations will constitute part of our future work. We will also 
investigate approaches for reducing the number of parameters of the 
context adaptive DNN to enable us to perform experiments with a 
larger number of factor classes. 
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