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Speech Bandwidth Extension Using Generative Adversarial Networks , ICASSP 2018.
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where xy; 1s the autoregressively modelled 24kHz waveform, and
X], 18 the 8kHz band-limited version, represented as a log mel-
spectrogram. The x|, is used as input in the WaveNet conditioning
stack.
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Figure 2: Illustration of the processing pipeline. The input audio,
sampled at 8 kHz, is transformed to a log mel-spectrogram repre-
sentation, then used as input in the conditioning stack of WaveNet.
The model outputs high-sample rate 24 kHz audio with higher fre-
quencies predicted from the rest of the signal.

Speech Bandwidth Extension Using Generative Adversarial Networks , WASPAA 2019.
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Figure 2: Illustration of the processing pipeline. The input audio,
sampled at 8 kHz, is transformed to a log mel-spectrogram repre-
sentation, then used as input in the conditioning stack of WaveNet.
The model outputs high-sample rate 24 kHz audio with higher fre-
quencies predicted from the rest of the signal.
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Figure 1: Spectrograms from an utterance from the LibriTTS cor-
pus. Top: Original audio, Middle: Audio reconstructed from the
WaveNet model conditioned on spectrograms derived from GSM-
FR audio, Bottom: Spectrogram from GSM-FR audio.

Speech Bandwidth Extension Using Generative Adversarial Networks , WASPAA 2019.
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Figure 1: (a) the single bandwidth neural network and (b) the mixed-band neural network

Improving Wideband Acoustic Models Using Mixed-bandwidth Training Data Via DNN Adaptation , INTERSPEECH 2014.
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Figure 1: Cross-lingual initialization — the hidden layers of a Figure 2: Cross-bandwidth initialization — a DNN trained on
DNN trained on one language, e.g., English (EN), is used to bandlimited wideband audio is then further retrained on nar-
initialize the DNN for a target language, e.g., Dutch (NL). The rowband audio (using Dutch(NL) as an example language).

output layer is initialized with random weights and the whole
network is retrained.

Improving DNN Bluetooth Narrowband Acoustic Models by Cross-bandwidth and Cross-lingual Initialization, INTERSPEECH 2017.
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Large-scale Mixed-bandwidth Deep Neural Network Acoustic Modeling For Automatic Speech Recognition , INTERSPEECH 2019.
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Improving Wideband Speech Recognition Using Mixed-bandwidth Training Data In CD-DNN-HMM , SLT 2012
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Figure 1: (a) Baseline AM architecture containing two lavers
of convolution lavers, 3 lavers of fully connected lavers, a liner
bottleneck laver and then followed by an output laver, (b) Band-
width embeddings connected to the dense lavers of the baseline
architecture, where c represents the type of the speech signal

oo = f(Wo—1+ Ve +by)
= f(Wi0i-1+ b)), (2)

where Eu = Vie + b;. Vj is the weight matrix connecting
the embedding vector e to the dense layer [. In this paper,
the bandwidth embeddings is connected to the first dense layer
(I = 3) after two convolutiongl layers. Ve is referred to as a
bias correction term and thus b; can be referred to as corrected
bias. This correction helps the model to differentiate and bet-
ter process the narrow and wideband data. e (¢ € {0,1}) is
an n dimensional embedding vector and randomly initialized.
During training, they are treated as model parameters and are
updated during back-propogation. During decoding, the model
uses the embedding vector based on the type of input speech
signal and is provided by c.

Bandwidth Embeddings for Mixed-bandwidth Speech Recognition , INTERSPEECH 2019.
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Algorithm 3 : Training procedure of strategy JT-3

Stepl: DNN-BWE training

1)

Train DNN-BWE with Narrowband_DS LMFB features
and Wideband_Ori LMFB features under MMSE crite-
rion just as described in Algorithm 1 and Algorithm 2.

Step2: DNN-AM training

1)
2)

3)

Mix Narrowband_Ori and Wideband_Ori randomly in
mini-batch level.

Concatenate DNN-BWE and DNN-AM as illustrated in
Fig. 4.

Feed Narrowband_Ori LMFB features into DNN-BWE
and wideband_Ori LMFB features into DNN-AM,
seperately, and update DNN-AM with CE criterion while
fixing DNN-BWE.

Step3: Joint modeling

1)

Jointly optimize DNN-BWE and DNN-AM as a whole
part under CE criterion, using Narrowband_Ori LMFB
features to update both DNN-BWE and DNN-AM, while
using Wideband_Ori LMFB features to update DNN-
AM only.

Step4: Fine-tuning for narrowband speech

1)

Further optimize DNN-BWE with the Narrowband_Ori
LMFB features under CE criterion while fixing DNN-
AM.

An experimental study on joint modeling of mixed-bandwidth data via deep neural networks for robust speech
recognition , [JCNN 2016
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Algorithm 3: Training Procedure of the MBJT-3 Strategy.

Step 1: PSN-MBE training

Train the PSN-MBE under the MMSE criterion as in

Eq. (3) by feeding the input layer with the LMFB features
of D}h- with the lowest sampling rate B, the intermediate
target layers with the LMFB features of {D% ..., =kl
with the sampling rates {Bs, ..., By 1}, and the output
layer with the LMFB features of Dy with the highest
sampling rate By .

Step 2: DNN-AM training

Combine the LMFB features from datasets

LD Py Dy 1, Dy } randomly in the mini-batch
level. Then, feed the LMFB features of

O b P Dy 1 } into the PSN-MBE via different
entries and the LMFB features of Dy into the DNN-AM,
and then update the DNN-AM with the CE criterion while
fixing PSN-MBE.

Step 3: Joint training

Jointly optimize the PSN-MBE and the DNN-AM under
the CE criterion, using the LMFB features of

{ Dy, Day oy Dy 1. Dy } to update both the DNN-AM
and PSN-MBE. Please note that only the succeeding
parameters after each entry for one sampling rate are
updated.

Step 4: Fine-tuning of the PSN-MBE

Further optimize the PSN-MBE with the LMFB features of
{Dy,Ds...., Dy _1} under the CE criterion while fixing
the DNN-AM.

Mixed-bandwidth cross-channel speech recognition via joint optimization of DNN-based bandwidth expansion and
acoustic modeling , TASLP 2019



