### Statistical Word Sense Improves Document Clustering Guoyu Tang

### Outlines

- Introduction
- Related work
- Document representation based on word sense
- Evaluation
- Conclusion and future work

## Introduction (1/4)

- Document Clustering:
  - Automatically organize a large collection of documents into groups of similar documents
- How to represent document?
  - Vector Space Model(Salton et al., 1975)
- Two linguistic phenomena:
  - Synonymy
    - computer and PC
  - Polysemy
    - apple: (1) A pomaceous fruit; (2) A computer company founded by Steve Jobs.

### Introduction (2/4)

VSM≻ Synonymy≻ Polysemy

**Explicit Sematic Representation** 

- Need large, general purpose lexical resources
- Tend to over-represent rare word senses while missing corpusspecific senses.

 Latent Semantic Representation
 According to previous research Lu et al., (2011) it cannot provide fine granularity discrimination.

### Introduction (3/4)

- Our solution: represent document with statistical word sense.
  - Word senses are constructed in two steps:
    - Local word senses are induced from the development dataset by the LDA models (Brody and Lapata, 2009).
    - Local word senses are combined as global word senses by clustering technology
  - Global word senses are used to represent every document after word sense disambiguation on the document.

## Introduction (4/4)

- The proposed model aims to well address the synonymy and polysemy issues in document representation.
  - Synonymy: Different words of the same meaning are identified as the same sense.
  - Polysemy: One word in different contexts can be identified as different sense in different contexts.
- Compared with previous researches,
  - Compared with the explicit sematic methods:
    - Word sense can be induced from the raw development dataset
    - It can be easily extended to process documents in other languages
  - Compared with the latent sematic methods:
    - It can achieve finer granularity discrimination in document representation

## Related work(1/2)

- Document representation models
  - Classic model
    - VSM(Vector Space Model)
      - Problems: Synonymy Polysemy
  - Improvement:
    - Explicit Sematic Representation(Hotho et al., 2003; Gabrilovich and Markovitch, 2007; Huang and Kuo, 2010)
      - Lexical resources: WordNet and wikipedia
      - Represent documents in the concept space
    - Latent Semantic Representation
      - Probabilistic latent semantic analysis (Puzicha and Hofmann, 1999)
      - Latent Dirichlet Allocation (Blei et al., 2003)

### Related work(2/2)

- Word sense disambiguation and word sense induction.
  - The use of word sense
    - Information retrieval (Stokoe, 2003) and text classification (Tufi and Koeva, 2007).
    - Drawbacks:
      - Large, manually compiled lexical resources such as the WordNet database are required.
      - It is hard to decide the proper granularity of the word sense.
  - In this work, word sense induction (WSI) algorithm is adopted in automatically discovering senses of each word in the test dataset.
    - The Bayesian model (Brody and Lapata ,2009)
      - Use an extended LDA model to induce word senses
      - It outperforms the state-of-the-art systems in SemEval-2007 evaluation (Agirre and Soroa, 2007).
    - Word sense induction algorithms have been integrated in information retrieval (Schutze and J. Pedersen, 1995; Navigli and Crisafulli, 2010).
      - The above researches only consider senses of words and do not investigate connection between words.

# Document representation based on word sense

- How to represent word sense?
- How to obtain word sense?
- How to use word sense in document clustering?

### How to represent word sense?(1/2)

#### Local word sense:

• A probability distribution over context words

Example #1: word sense arm#1 for word arm arm: 0.159 sleeve: 0.069 sew: 0.019 Example #2: word sense arm#2 for word arm arm: 0.116 weapon: 0.039 war: 0.026

### How to represent word sense?(2/2)

- Global word sense:
  - A group of similar local word senses

Example #3: sense cluster c#1
{arm#1, sleeve#1}
arm#1={arm: 0.159, sleeve: 0.069, sew: 0.019}
sleeve#1={sleeve:0.179,arm:0.059,sew: 0.029}

### How to obtain word sense?(1/2)

- Local word sense:
  - Bayesian word sense introduction model (Brody and Lapata, 2009)



FIGURE 1 - Bayesian sense induction model (Brody and Lapata, 2009).

### How to obtain word sense?(2/2)

- Apply clustering algorithm to obtain global word sense.
  - In the clustering algorithms, we take context words of local word senses as features and probabilities of the context words as the weights of features.
  - Bisecting K-Means
    - An extension of K-means, which is proved better than standard K-Means and hierarchical agglomerative clustering (Steinbach et al., 2000). It begins with a large cluster consisting of every element to be clustered and iteratively picks the largest cluster in the set, split it into two.

## How to use word sense in document clustering?(1/3)

- Bayesian word sense disambiguation
  - Example:
    - ① There's a tear in the arm of my jacket.
      - P(arm#1| S1)=0.998005.
    - ②The nation must arm its soldiers for battle.
      - P(arm#2| S2)= 0.944096.



FIGURE 1 - Bayesian sense induction model (Brody and Lapata, 2009).

# How to use word sense in document clustering?(2/3)

Represent document in global word sense space

 $n(c,d) = \sum_{w_k \in d} n(c|w_k,d) \quad n(c|w,d) = \sum_{s_w \in c} p(s_w|d)$ 

Sense based TF-IDF

$$tf(c,d) = n(c,d), idf(c) = \sum_{n(c,d)>1} 1$$

- Clustering Methods:
  - Cosine similarity
  - Hierarchical Agglomerative Clustering

# How to use word sense in document clustering?(2/3)



### Evaluation

### Setup

- Development Dataset: Giga Word ( 2.1 million English documents and 3.5 million Chinese documents )
- Test Dataset: TDT4 and CLTC in both English and Chinese language
   Dataset English Chinese
- Evaluation criteria
  - Precision
  - Recall
  - F-Measure

| Dataset           | English | Chinese |  |  |  |
|-------------------|---------|---------|--|--|--|
| TDT41             | 38/1270 | 37/657  |  |  |  |
| TDT42             | 33/617  | 32/560  |  |  |  |
| CLTC1             | 20/200  | 20/200  |  |  |  |
| CLTC <sub>2</sub> | 20/600  | 20/600  |  |  |  |

### Experiment

### • Methods:

- VSM (Vector Space Model)
- LDA(Latent Dirichlet Allocation)
- LSSM (Local Sense Space Model)
- GSSM (Global Sense Space Model)

### • Result

| ~~~~~   | 0000000000000000000000 |                   |       |       | 00000 | 000000000000000000000000000000000000000 |       | 0000000000000000000000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |
|---------|------------------------|-------------------|-------|-------|-------|-----------------------------------------|-------|------------------------|-----------------------------------------|-------|
| Methods | CLTC1                  | CLTC <sub>2</sub> | TDT41 | TDT42 |       | Methods                                 | CLTC1 | CLTC <sub>2</sub>      | TDT41                                   | TDT42 |
| VSM     | 0.886                  | 0.898             | 0.894 | 0.924 |       | VSM                                     | 0.886 | 0.898                  | 0.894                                   | 0.924 |
| LDA     | 0.832                  | 0.891             | 0.789 | 0.854 |       | LDA                                     | 0.832 | 0.891                  | 0.789                                   | 0.854 |
| LSSM    | 0.888                  | 0.893             | 0.922 | 0.964 |       | LSSM                                    | 0.888 | 0.893                  | 0.922                                   | 0.964 |
| GSSM    | 0.905                  | 0.918             | 0.926 | 0.964 |       | GSSM                                    | 0.905 | 0.918                  | 0.926                                   | 0.964 |

### Conclusion and future work

- Our research on addressing synonymy and polysemy issues in document representation shows that document representation can be further improved with word sense.
- In this work, a new document represent model is proposed to make full use of global word sense.
  - The proposed model aims to well address the synonymy and polysemy issues
  - Experiments on four datasets of two language cases show that our proposed SCM model advances both baseline systems and LDA models in document clustering task in both language cases.
- In the future work, we will continue to evaluate the performance of our model with datasets of smaller samples, e.g., SMS messages and tweets.

## Reference(1/2)

- G. Salton, A. Wong, and C. S. Yang(1975). A Vector Space Model for Automatic Indexing. Communications of the ACM, v. 18(11): 613–620. 1975.
- A. Hotho, S. Staab, G. Stumme (2003). WordNet improves text document clustering. Proc. of SIGIR2003 semantic web workshop. ACM, New York, pp. 541-544.
- Evgeniy Gabrilovich and Shaul Markovitch.(2007) Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. Proceedings of The 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, January 2007
- D.M. Blei, A. Y. Ng, and M.I. Jordan (2003). Latent dirichlet allocation. J. Machine Learning Research (3):993-1022.
- T. K. Landauer and S. T. Domais(1997). A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction and Representation of Knowledge. Psychological Review. 104(2):211-240.
- Yue Lu , Qiaozhu Mei , Chengxiang Zhai (2011), Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA, Information Retrieval, v.14 n.2, p.178-203, April 2011
- S. Brody, M. Lapata (2009). Bayesian word sense induction. Proc. of EACL'2009: 103-111.
- H. Huang, Y. Kuo (2010). Cross-Lingual Document Representation and Semantic Similarity Measure: A Fuzzy Set and Rough Set Based Approach. Fuzzy Systems, IEEE Transactions , vol.18, no.6, pp.1098-1111.
- J. Pessiot, Y. Kim, M. Amini, P. Gallinari (2010). Improving document clustering in a learned concet space. Information Processing and Management. vol. 46:180-192
- I. S. Dhillon (2001). Co-clustering documents and words using bipartite spectral graph partitioning. Proc. SIGKDD'2001:269-274.
- S. K. M. Wong, W. Ziarko, P. C. N. Wong (1985). Generalized vector model in information retrieval. Proc. of the 8th ACM SIGIR:18-25
- A.K. Farahat, M.S.Kamel (2010). Statistical semantic for enhancing document clustering. Knowledge and Information Systems.

## Reference(2/2)

- R. Navigli (2009). Word sense disambiguation: A survey. ACM Comput. Surv. 41, 2, Article 10 (February 2009), 69 pages.
- C. Stokoe, M. P. Oakes, and J. Tait (2003). Word sense disambiguation in information retrieval revisited. In Proceedings of SIGIR '03:159-166.
- D. Tufi; and S. Koeva (2007). Ontology-Supported Text Classification Based on Cross-Lingual Word Sense Disambiguation. In Proceedings of the 7th international workshop on Fuzzy Logic and Applications: Applications of Fuzzy Sets Theory (WILF '07), Francesco Masulli, Sushmita Mitra, and Gabriella Pasi (Eds.). Springer-Verlag, Berlin, Heidelberg, 447-455.
- M. Denkowski (2009). A Survey of Techniques for Unsupervised Word Sense Induction. Technical Report. Language Technologies Institute, Carnegie Mellon University
- E. Agirre and A. Soroa (2007). Semeval-2007 tasko2: Evaluating word sense induction and discrimination systems. SemEval2007.
- H. Schutze and J. Pedersen (1995). Information Retrieval based on word senses. Proc. of SDAIR'95: 161–175.
- R. Navigli and G. Crisafulli (2010). Inducing word senses to improve web search result clustering. Proc. of EMNLP '10:116-126.
- I. S. Dhillon and D. S. Modha (2001). Concept decompositions for large sparse text data using clustering. Mach. Learn., 42(1-2):143~175, 2001.
- Y. Zhao, G. Karypis, and U. Fayyad (2005). Hierarchical clustering algorithms for document datasets. Data Mining and Knowledge Discovery, 10(2):141~168, 2005.
- C. Ordonez and E. Omiecinski (2002). Frem: fast and robust em clustering for large data sets. In CIKM '02, pp.590~599, New York, NY, USA, 2002. ACM Press.
- T. L. Griffiths and M.. Steyvers (2004). Finding scientific topics. Proc. Nat. Acad. Sci. 101: 5228--5235.
- M. Steinbach, G. Karypis, V. Kumar(2000). A comparison of document clustering techniques. KDD Workshop on Text Mining.
- Junbo Kong and David Graff (2005). TDT4 multilingual broadcast news speech corpus.
- G. Tang, Y. Xia, M. Zhang, H. Li, F. Zheng (2011) CLGVSM: Adapting Generalized Vector Space Model to Cross-lingual Document Clustering. Proc. of IJCNLP'2010: 580-588.
- H. Schmid (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees. Proceedings of International Conference on New Methods in Language Processing, Manchester, UK
- E. M. Voorhees (1986) Implementing agglomerative hierarchic clustering algorithms for use in document retrieval. Information Processing and Management. v.22(6):465-476. 1986.
- Teh, Y. W., M. I. Jordan, M. J. Beal, and D. M. Blei(2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476):1566–1581.



# Thank you !

