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Abstract

Recurrent neural networks (RNNs) are powerful in modeling sequential data such
as speech signals and hence are suitable for acoustic modeling in automatic
speech recognition (ASR). Although some successful stories have been reported,
training RNNs remains highly challenging. Recent research found that a
well-trained model can be used as a source of ‘dark knowledge’ to train other
models, by use of soft targets generated by the teacher model. This idea has been
employed to train simple models from powerful yet complex models. In this paper,
we perform an opposite research that uses a simple model to train a complex
model such as an RNN. We show that the knowledge transfer learning with soft
targets leads to a smoother objective function which simplifies complex model
training and improves model generalizability. Additionally, the knowledge transfer
learning can be combined with the traditional supervised learning, in a way of
either regularization or pre-training. Experiments on an ASR task demonstrated
that this method can be successfully applied to train RNNs, without any tricks on
the learning scheme (such as momentum) or Hessian approximation.
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1 Introduction
Deep learning has gained significant success in a wide range of applications, for

example, automatic speech recognition (ASR) [1, 2, 3, 4, 5, 6]. A powerful deep

learning model that has been reported effective in ASR is the recurrent neural

network (RNN)[7, 8, 9, 10, 11, 12]. An obvious advantage of RNNs compared to

conventional deep neural networks (DNN) is that RNNs can model long-term dy-

namic properties of speech signals.

A simple training method for RNNs is the back propagation through time algo-

rithm [13]. This first-order approach, however, is rather inefficient due to two major

difficulties in modeling long-term temporal dependency: (1) the twists of the ob-

jective function caused by the high nonlinearity; (2) the vanishing and explosion of

gradients in back propagation [14]. In order to address these difficulties (mainly the

second), a modified architecture called the long short-term memory (LSTM) was

proposed in [15] and has been successfully applied to ASR [16]. In the echo-state-

network (ESN) architecture proposed by [17], the hidden-to-hidden weights are not

learned in the training so the problem of odd gradients does not exist. Recently,

a special variant of the Hessian-free (HF) optimization approach was successfully

applied to learn RNNs from random initialization [18, 19]. A particular problem

of the HF approach is that the computation is demanding. Another recent study
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shows that a carefully designed momentum setting can significantly improve RNN

learning, with limited computation and can reach the performance obtained with

the HF method [20]. Although these methods can address the difficulties of RNN

training to some extent, they are either too tricky (e.g., the momentum method) or

less optimal (e.g., the ESN method).

In this paper, we present a simple yet powerful approach to learn RNNs by knowl-

edge transfer. This work is largely motivated by the recently proposed logit match-

ing [21] and dark knowledge distiller [22]. The basic idea of the knowledge transfer

approach is that a well-trained model involves rich knowledge of the target task and

can be used to guide training other models. Current research focuses on learning

simple models (in terms of structure) from a powerful yet complex model, or an

ensemble of models [21, 22]. In ASR, this idea has been employed to train small

DNN models from a large and complex one [23].

In this paper, we conduct an opposite study, which employs transfer learning to

train complex models guided by a simple model. Different from the existing research

that tries to distill knowledge from the teacher model, we treat the teacher model as

a regularization so that the objective function of the complex model is smoothed, or

a pre-training step so that the supervised training can be located at a good starting

point. This in fact leads to a new training approach that is easy to perform and

can be extended to any model architecture. We employ this idea to address the

difficulties in RNN training. The experiments on an ASR task with the Aurora4

database verified that the proposed method can significantly improve RNN training.

The reset of the paper is organized as follows. Section 2 briefly discusses some

related works, and 3 presents the methods. Section 4 presents the experiments, and

the paper is concluded by Section 5.

2 Related to prior work
This study is directly motivated by the work of dark knowledge distillation [22].

The important aspect that distinguishes our work from others is that the existing

methods focus on distilling knowledge of complex model and use it to empower

simple models, whereas our study uses simple models to teach complex models.

The teacher model in our work in fact knows not so much, but it is sufficient to

provide a rough guide that is important to train complex models, such as RNNs in

the present study. More precisely, the existing methods use the teacher model as

a knowledge source to learn from, while our method uses the teacher model as a

regularization or for pre-training.

Another more related work is the knowledge transfer between DNNs and RNNs,

as proposed in [24]. However, it employs knowledge transfer to train DNNs with

RNNs. This still follows the conventional idea described above, and so is different

from ours, even though both work on the same deep learning models and employ

the same technique.

3 RNN training with knowledge transfer
3.1 Dark knowledge distiller

The idea that a well-trained DNN model can be used as a teacher to guide the

training of other models was proposed by several authors almost at the same
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time [21, 22, 23]. The basic assumption is that the teacher model encodes rich

knowledge for the task in hand and this knowledge can be distilled to boost the

child model which is often simpler and can not learn many details without the

teacher’s guide. There are a few ways to distill the knowledge. The logit matching

approach proposed by [21] teaches a child model by encouraging its logits (activa-

tions before softmax) close to those of the teacher model in terms of the `-2 norm,

and the dark knowledge distiller model proposed by [22] encourages the posterior

probabilities (softmax output) of the child model close to those of the teacher model

in terms of cross entropy. This transfer learning has been applied to learn simple

models to approach the performance of a complex model or a large model ensemble,

for example, learning a small DNN from a large DNN [23] or a DNN from a more

complex RNN [24].

We focus on the dark knowledge distiller approach as it showed better performance

in our experiments. Basically, a well-trained DNN model plays the role of a teacher

and generates posterior probabilities of the training samples as new targets for

training other models. These posterior probabilities are called ‘soft targets’ since

the class identities are not as deterministic as the original one-hot ‘hard targets’.

To make the targets softer, a temperature T can be applied to scale the logits

in the softmax, formulated as pi = ezi/T∑
j ezj/T

where i, j index the output units.

The introduction of T allows more information of non-targets to be distilled. For

example, a training sample with the hard target [1 0 0] does not involve any rank

information for the second and third class; with the soft targets, e.g., [0.8, 0.15, 0.5],

the rank information of the second and third class is reflected. Additionally, with

a large T applied, the target is even softer, e.g, [0.6, 0.25, 0.15], which allows the

non-target classes to be more prominent in the training. Note that the additional

rank information on the non-target classes is not available in the original target,

but is distilled from the teacher model. Additionally, a larger T boosts information

of non-target classes but at the same time reduces information of target classes.

If T is very large, the soft target falls back to a uniform distribution and is not

informative any more. Therefore, T controls how the knowledge is distilled from

the teacher model and hence needs to be set appropriately according to the task in

hand.

3.2 Dark knowledge for complex model training

Dark knowledge, in the form of soft targets, can be used not only for boosting

simple models, but also for training complex models. The basic assumption is that

soft targets lead to a smoother objective function that is easier to optimize compared

to the original one. Intuitively, soft targets offer probabilistic class labels which are

not as arbitrary as hard targets. This matches the real situation where uncertainty

always exists in classification tasks. For example, in speech recognition, it is often

difficult to identify the phone class of a frame due to the effect of co-articulation.

Moreover, the uncertainty associated with soft targets blurs the decision boundary

of correct and incorrect classes. The smoothness associated with soft targets has

been noticed in [22], which states that soft targets result in less variance in the

gradient between training samples. This is equal to say that the objective function

is less twisted, or smoother in another word. A smooth objective function is certainly
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much easier to optimize, and in the extreme case where the targets are very soft

(i.e., T goes to infinity), the objective function becomes flat and the optimization

is trivial.

In order to investigate the smoothness of the objective function with soft tar-

gets, we study a simple neural network, the logistic regression model formulated as

y = 1

1+e−wT x
where x ∈ R2 and y ∈ R represent the input and output variables

respectively, and w ∈ R2 represents the model parameters. A number of samples

{xi} are sampled from two classes, following the two Gaussian mixture models as

shown in Fig. 1. The hard target of each training sample is either 1 or 0, depend-

ing on the class from which the sample is sampled, and the soft target is obtained

from the posterior probability with which the sample belongs to the first class. The

objective function is cross entropy, defined by

L (w) = −
∑
i

[tiln{yi(w)}+ (1− ti)ln{1− yi(w)}]

where ti represents the target (either soft or hard).
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Figure 1: Two distributions used to sample data for the toy experiment.

Fig. 2 shows the objective function L (w) with hard and soft targets. It can be

seen that soft targets indeed lead to a smoother objective function, which makes it

easier to train the model. Note that this is just a toy experiment. For deep models

in practice, the objective functions are highly complex and bumpy. Nevertheless, it

is still reasonable to expect that soft targets result in smoother objective functions.

We argue that this smoothness is attributed to the less discriminative information

involved in soft targets, and so less knowledge to learn in model training.

The smoothness of the objective function is highly desirable particularly in train-

ing deep and complex models such as RNNs. It can significantly mitigate the difficul-

ties associated with the twisted objective function caused by layer-by-layer nonlin-

ear composition. In this paper, we employ this property of dark knowledge transfer

learning to train RNN models, which is hard and tricky with other methods.
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(a) Hard targets
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(b) Soft targets

Figure 2: The objective functions of logistic regression with hard and soft targets.

3.3 Regularization view

It has been known that including both soft and hard targets improves perfor-

mance with appropriate setting of a weight factor to balance their relative con-

tributions [22]. This can be formulated as a regularized training problem, with the

objective function given by:

L (θ) = αLH(θ) + LS(θ)

=
∑
i

∑
j

(αtij + pij)ln{yij(θ)}

where θ represents the parameters of the model, LH(θ) and LS(θ) are the cost

associated with the hard and soft targets, respectively, and α is the weight factor.

Additionally, tij and pij are the hard and soft targets for the i-th sample on the j-th

class, respectively. Note that LH(θ) is the objective function of the conventional

supervised training, and so LS(θ) plays a role of regularization. The effect of the

regularization term is to force the model under training (child model) to mimic the

teacher model, a way of knowledge transfer. In this study, a DNN model is used as

the teacher model to regularize the training of an RNN. With this regularization,

the RNN training looks for optima which produce similar targets as the DNN does,

so the risk of over-fitting and under-fitting can be largely reduced.

3.4 Pre-training view

Instead of training the model with soft and hard targets altogether, we can first

train a reasonable model with soft targets, and then refine the model with hard

targets. By this way, the transfer learning plays the role of pre-training, and the

conventional supervised training plays the role of fine-tuning. The rationale is that

the smooth objective function associated with soft targets allows quicker and easier

optimization and so can be used to conduct model initialization. However since

the information involved in soft targets is less discriminative, refinement with hard

targets tends to be helpful. This can be informally interpreted as teaching the model

with less but important discriminative information firstly, and once the model is

strong enough, more discriminative information can be learned.
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This leads to a new pre-training strategy based on dark knowledge transfer. In

the conventional pre-training approaches based on either restricted Boltzmann ma-

chines (RBM) [25] or auto-encoders (AE) [26], simple models are trained and stacked

to construct complex models. The dark knowledge pre-training functions in a dif-

ferent way: it smoothes the objective function with less discriminative information

(soft targets) so the model becomes trainable, though the model structure does not

change. This approach possesses several advantages: (1) it is totally supervised and

so more task-oriented; (2) it pre-trains the model as a whole, instead of layer by

layer, so tends to be fast; (3) it can be used to pre-train any complex models for

which the layer structure is not clear, such as the RNN model that we focus on in

this paper.

The pre-training view is related to the curriculum training method discussed

in [27], where training samples that are easy to learn are firstly selected to train the

model, while more difficult ones are selected later when the model has been fairly

strong. In the dark knowledge pre-training, the soft targets can be regarded as easy

samples for pre-training, and hard targets as difficult samples for fine-tuning.

Interestingly, the regularization view and the pre-training view are closely re-

lated. The pre-training is essentially a regularization that places the model to some

location in the parameter space where good local minima can be easily reached.

This relationship between regularization and pre-training has been discussed in the

context of DNN training [28].

4 Experiments
To verify the proposed method, we use it to train RNN acoustic models for an ASR

task which is known to be difficult. The experiments are conducted on the Aurora4

database in noisy conditions, and the data profile is largely standard: 7137 utter-

ances for model training, 4620 utterances for development and 4620 utterances for

testing. The Kaldi toolkit[1] is used to conduct the model training and performance

evaluation, and the process largely follows the Aurora4 s5 recipe for GPU-based

DNN training. Specifically, the training starts from constructing a system based on

Gaussian mixture models (GMM) with the standard 13-dimensional MFCC features

plus the first and second order derivatives. A DNN system is then trained with the

alignment provided by the GMM system. The feature used for the DNN system is

the 40-dimensional Fbanks. A symmetric 11-frame window is applied to concatenate

neighboring frames, and an LDA transform is used to reduce the feature dimension

to 200, which forms the DNN input. The DNN architecture involves 4 hidden layers

and each layer consists of 2048 units. The output layer is composed of 2008 units,

equal to the total number of Gaussian mixtures in the GMM system. The cross

entropy is used as the training criterion, and the stochastic gradient descendent

(SGD) algorithm is employed to perform the training.

In the dark knowledge transfer learning, the trained DNN model is used as the

teacher model to generate soft targets for the RNN training. The RNN is based

on the LSTM structure, where the input features are the 40-dimensional Fbanks,

and the output units correspond to the Gaussian mixtures as in the DNN. The

[1]http://kaldi.sourceforge.net/
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momentum is empirically set to 0.9, and the starting learning rate is set to 0.0001

by default.

The experimental results are reported in Table 1. The performance is evaluated

in terms of two criteria: the frame accuracy (FA) and the word error rate (WER).

While FA is more related to the training criterion (cross entropy), WER is more

important for speech recognition. In Table 1, the FAs are reported on both the

training set (TR FA) and the cross validation set (CV FA), and the WER is reported

on the test set.

In Table 1, RNN-0 is the RNN baseline trained with hard targets. RNN-T1 and

RNN-T2 are trained with dark knowledge transfer, where the temperature T is set

to 1 and 2 respectively. For each dark knowledge transfer model, the soft targets

are employed in three ways: in the ‘soft’ way, only soft targets are used in RNN

training; in the ‘reg.’ way, the soft and hard targets are used together, and the soft

targets play the role of regularization; and in the ‘pretrain’ way, the soft targets

and the hard targets are used sequentially, and the soft targets play the role of

pre-training. The weight factor in the regularization approach is empirically set to

0.5.

Table 1: Results with Different Models and Training Methods
Targets TR FA% CV FA% WER%

DNN Hard 63.0 45.2 11.40
RNN-0 Hard 67.3 51.9 13.57
RNN-T1 (soft) Soft 59.4 49.9 11.46
RNN-T1 (reg.) Soft + Hard 67.5 53.7 10.84
RNN-T1 (pretrain) Soft + Hard 65.5 54.2 10.71
RNN-T2 (soft) Soft 58.2 49.5 11.32
RNN-T2 (reg.) Soft + Hard 65.8 53.3 10.88
RNN-T2 (pretrain) Soft + Hard 64.6 54.1 10.57

It can be observed that the RNN baseline (RNN-0) can not beat the DNN baseline

in terms of WER, although much effort has been devoted to calibrate the training

process, including various trials on different learning rates and momentum values.

This is consistent with the results published with the Kaldi recipe. Note that this

does not mean RNNs are inferior to DNNs. From the FA results, it is clear that the

RNN model leads to better quality in terms of the training objective. Unfortunately,

this advantage is not propagated to WER on the test set. Additionally, the results

shown here can not be interpreted as that RNNs are not suitable for ASR (in

terms of WER). In fact several researchers have reported better WERs with RNNs,

e.g., [8, 9, 10, 12]. Our results just say that with the Aurora4 database, the RNN

with the basic training method does not generalize well in terms of WER, although

it works well in terms of the training criterion.

This problem can be largely solved by the dark knowledge transfer learning, as

demonstrated by the results of the RNN-T1 and RNN-T2 systems. It can be seen

that with the soft targets only, the RNN system obtains equal (T=1) or even better

(T=2) performance in comparison with the DNN baseline, which means that the

knowledge embedded in the DNN model has been transferred to the RNN model,

and the knowledge can be arranged in a better form within the RNN structure.

Paying attention to the FA results, it can be seen that the knowledge transfer

learning does not improve accuracy on the training set, but leads to better or close
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FAs on the CV set compared to the DNN and RNN baseline. This indicates that

transfer learning with soft targets scarifies the FA performance on the training set a

little, but leads to better generalization on the CV set. Additionally, the advantage

on WER indicates that the generalization is improved not only in the sense of data

sets, but also in the sense of evaluation metrics.

When combining soft and hard targets, either in the way of regularization or

pre-training, the performance in terms of both FA and WER is improved. This

confirms the hypothesis that the knowledge transfer learning does play roles of

regularization and pre-training. Note that in all these cases, the FA results on the

training set are lower than that of the RNN baseline, which confirms that the

advantage of the knowledge transform learning resides in improving generalizability

of the resultant model. When comparing the two dark knowledge RNN systems

with different temperatures T , we see T=2 leads to little worse FAs on the training

and CV set, but slightly better WERs. This confirms that a higher temperature

generates smoother objective functions and leads to better generalization.

5 Conclusion
We proposed a novel RNN training method based on dark knowledge transfer learn-

ing. The experimental results on the ASR task demonstrated that knowledge learned

by simple models can be effectively used to guide training complex models. This

knowledge can be used either as a regularization or for pre-training, and both ap-

proaches can lead to models that are more generalizable, a desired property for

complex models. The future work involves applying this technique to more complex

models that are difficult to train with conventional approaches, for example deep

RNNs. Knowledge transfer between heterogeneous models is under investigation as

well, e.g., between probabilistic models and neural models.



Wang et al. Page 9 of 10

Acknowledgement
This research was supported by the National Science Foundation of China (NSFC)

under the project No. 61371136, and the MESTDC PhD Foundation Project No.

20130002120011. It was also supported by Sinovoice and Huilan Ltd.

Author details
1Center for Speech and Language Technology, Research Institute of Information Technology, Tsinghua University,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 2Center for Speech and Language Technologies, Division of

Technical Innovation and Development, Tsinghua National Laboratory for Information Science and Technology,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 3Department of Computer Science and Technology, Tsinghua

University, ROOM 1-303, BLDG FIT, 100084 Beijing, China. 4Chengdu Institute of Computer Applications at

Chinese Academy of Sciences and University of Chinese Academy of Sciences, Chengdu, China.

References
1. George E Dahl, Dong Yu, Li Deng, and Alex Acero, “Large vocabulary continuous speech recognition with

context-dependent DBN-HMMs,” in Proceedings of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2011, pp. 4688–4691.

2. Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,

Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al., “Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups,” IEEE Signal Processing Magazine, vol. 29, no.

6, pp. 82–97, 2012.

3. George E Dahl, Dong Yu, Li Deng, and Alex Acero, “Context-dependent pre-trained deep neural networks for

large-vocabulary speech recognition,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,

no. 1, pp. 30–42, 2012.

4. Li Deng and Dong Yu, “Deep learning: Methods and applications,” Foundations and Trends in Signal

Processing, vol. 7, no. 3-4, pp. 197–387, 2013.

5. Li Deng, “A tutorial survey of architectures, algorithms, and applications for deep learning,” APSIPA

Transactions on Signal and Information Processing, vol. 3, pp. e2, 2014.

6. Jürgen Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117,

2015.

7. Alex Graves, A-R Mohamed, and Geoffrey Hinton, “Speech recognition with deep recurrent neural networks,”

in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2013, pp. 6645–6649.

8. Alex Graves and Navdeep Jaitly, “Towards end-to-end speech recognition with recurrent neural networks,” in

Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 1764–1772.

9. Hasim Sak, Andrew Senior, and Françoise Beaufays, “Long short-term memory recurrent neural network

architectures for large scale acoustic modeling,” in Proceedings of the Annual Conference of International

Speech Communication Association (INTERSPEECH), 2014.

10. Chao Weng, Dong Yu, Shinji Watanabe, and Biing-Hwang Fred Juang, “Recurrent deep neural networks for

robust speech recognition,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2014, pp. 5532–5536.

11. Dong Yu and Li Deng, “Recurrent neural networks and related models,” in Automatic Speech Recognition, pp.

237–266. Springer, 2015.

12. Jürgen T Geiger, Zixing Zhang, Felix Weninger, Björn Schuller, and Gerhard Rigoll, “Robust speech recognition

using long short-term memory recurrent neural networks for hybrid acoustic modelling,” in Proceedings of the

Annual Conference of International Speech Communication Association (INTERSPEECH), 2014.

13. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, 10.1038/323533a0.

14. Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning long-term dependencies with gradient descent is

difficult,” Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157–166, 1994.

15. Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.

1735–1780, 1997.

16. Alex Graves and Jürgen Schmidhuber, “Framewise phoneme classification with bidirectional lstm and other

neural network architectures,” Neural Networks, vol. 18, no. 5, pp. 602–610, 2005.

17. Herbert Jaeger and Harald Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in

wireless communication,” Science, vol. 304, no. 5667, pp. 78–80, 2004.

18. James Martens, “Deep learning via hessian-free optimization,” in Proceedings of the 27th International

Conference on Machine Learning (ICML-10), 2010, pp. 735–742.

19. James Martens and Ilya Sutskever, “Learning recurrent neural networks with hessian-free optimization,” in

Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 1033–1040.

20. Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton, “On the importance of initialization and

momentum in deep learning,” in Proceedings of the 30th International Conference on Machine Learning

(ICML-13), 2013, pp. 1139–1147.

21. Jimmy Ba and Rich Caruana, “Do deep nets really need to be deep?,” in Advances in Neural Information

Processing Systems, 2014, pp. 2654–2662.

22. Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the knowledge in a neural network,” in NIPS 2014

Deep Learning Workshop, 2014.

23. Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong, “Learning small-size dnn with output-distribution-based

criteria,” in Proceedings of the Annual Conference of International Speech Communication Association

(INTERSPEECH), September 2014.



Wang et al. Page 10 of 10

24. William Chan, Nan Rosemary Ke, and Ian Lane, “Transferring knowledge from a rnn to a dnn,” arXiv preprint

arXiv:1504.01483, 2015.

25. Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing the dimensionality of data with neural networks,”

Science, vol. 313, no. 5786, pp. 504–507, 2006.

26. Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al., “Greedy layer-wise training of deep

networks,” Advances in neural information processing systems, vol. 19, pp. 153, 2007.

27. Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio,

“Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.

28. Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio,

“Why does unsupervised pre-training help deep learning?,” The Journal of Machine Learning Research, vol. 11,

pp. 625–660, 2010.


