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Abstract

Background To populate knowledge repositories, such as

WordNet, Freebase and NELL, two branches of research

have grown separately for decades. On the one hand, cor-

pus-based methods which leverage unstructured free texts

have been explored for years; on the other hand, some

recently emerged embedding-based approaches use struc-

tured knowledge graphs to learn distributed representations

of entities and relations. But there are still few compre-

hensive and elegant models that can integrate those large-

scale heterogeneous resources to satisfy multiple subtasks

of knowledge population including entity inference, rela-

tion prediction and triplet classification.

Methods This paper contributes a novel embedding model

which estimates the probability of each candidate belief

\h,r,t,m[ in a large-scale knowledge repository via

simultaneously learning distributed representations for

entities (h and t), relations (r) and the words in relation

mentions (m). It facilitates knowledge population by means

of simple vector operations to discover new beliefs. Given

an imperfect belief, we can not only infer the missing

entities and predict the unknown relations, but also identify

the plausibility of the belief, just by leveraging the learned

embeddings of remaining evidence.

Results To demonstrate the scalability and the effective-

ness of our model, experiments have been conducted on

several large-scale repositories which contain millions of

beliefs from WordNet, Freebase and NELL, and the results

are compared with other cutting-edge approaches via

comparing the performance assessed by the tasks of entity

inference, relation prediction and triplet classification with

their respective metrics. Extensive experimental results

show that the proposed model outperforms the state of the

arts with significant improvements.

Conclusions The essence of the improvements comes from

the capability of our model that encodes not only structured

knowledge graph information, but also unstructured rela-

tion mentions, into continuous vector spaces, so that we

can bridge the gap of one-hot representations, and expect to

discover certain relevance among entities, relations and

even words in relation mentions.
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Introduction

Information extraction [12, 27] is the study of extracting

structured beliefs from unstructured online texts to popu-

late knowledge bases and has been the focus of much

attention in recent years because of the explosive growth in

the number of web pages online. Thanks to the long-term

efforts of domain experts, crowdsourcing and even

machine learning techniques, several web-scale knowledge

repositories, such as WordNet,1 Freebase2 and NELL,3

have been built. Among these knowledge repositories,

WordNet [22] and Freebase [1, 2] follow the RDF (Re-

source Description Framework) format [18] that represents

each belief as a triplet, i.e., \head entity, relation,

tail entity[, but NELL [6] goes a step further, and extends

each triplet with a relation mention which is a snatch of

extracted free text to indicate the corresponding relation.

Here, we take a belief recorded in NELL as an example:

\city:caroline, citylocatedinstate, stateorprovince:mary-

land, county and state of[, in which county and state of is

the mention between the head entity city:caroline and the

tail entity stateorprovince:maryland, to indicate the rela-

tion citylocatedinstate. In some cases, NELL also provides

the confidence of each belief automatically learned by

machines.

Although we have gathered colossal quantities of

beliefs, state-of-the-art work [33] reports that our

knowledge bases are far from complete. For instance,

nearly 97 % persons in Freebase have no records about

their parents, whereas we human beings can still find the

clue of their immediate family for most of the Freebase

persons via searching on the web and looking up their

Wiki. To populate the incomplete knowledge repositories

assisted by computers, scientists either compare relation

extraction performance between two named entities on

manually annotated text datasets, such as ACE4 and

MUC,5 or look for effective approaches to improve the

accuracy of link prediction within the knowledge graphs

constructed by the repositories, without using extra free

texts.

Recently, studies on text-based knowledge population

have benefited a lot from a useful technique known as

distantly supervised relation extraction (DSRE [23]), which

bridges the gap between structured knowledge bases and

unstructured free texts. It alleviates the labor of manual

annotation by means of automatically aligning each triplet

\h,r,t[ from knowledge bases to the corresponding rela-

tion mention m in free texts. However, the latest research

[8] points out that DSRE still suffers from the problem of

sparse and noisy features. Although Fan et al. fix the issue

to some extent via leveraging the low-dimensional matrix

factorization, this approach was found to not be able to

handle large-scale datasets, as discussed in their article [8].

Fortunately, knowledge embedding techniques [3, 5]

represent an approach that allows for the encoding of high-

dimensional sparse features into low-dimensional dis-

tributed representations. A simple but effective model is

TransE [4] which trains a vector representation for each

entity and relation in large-scale knowledge bases without

considering any text information. Even though Weston

et al. [34], Wang et al. [31] and Fan et al. [7] broaden this

field by adding word embeddings, there is still no com-

prehensive and elegant model that can integrate such large-

scale heterogeneous resources to satisfy multiple subtasks

of knowledge population including entity inference, rela-

tion prediction and triplet classification.

Therefore, in this paper, we contribute a novel embed-

ding model which estimates the probability of each can-

didate belief \h; r; t;m[ in large-scale repositories. It

overcomes the limitation of heterogeneous data and

establishes a connection between the structured knowledge

graph and unstructured free texts. The distributed repre-

sentations for entities (h and t), relations (r), as well as the

words in relation mentions (m) are simultaneously learned

within the uniform framework of the probabilistic belief

embedding (PBE) we propose. Knowledge population can

then be facilitated by means of simple vector operations to

discover new beliefs. Given an imperfect belief, we can

not only infer the missing entities, predict the unknown

relations, but calculate the plausibility of the belief as well,

just by means of the learned vector representations of

remaining evidence. To prove the effectiveness and the

scalability of PBE, we set up extensive experiments on

multiple tasks, including entity inference, relation predic-

tion and triplet classification, for knowledge population,

and evaluate both our model and other cutting-edge

approaches with appropriate metrics on several well-

known large-scale repositories, such as WordNet, Freebase

and NELL, which contain millions of beliefs. A detailed

comparison of experimental results demonstrates that the

proposed model outperforms other state-of-the-art

approaches, with significant improvements. As we further

explore the essence of improvements, it turns out that PBE

is capable of encoding both structured knowledge graph

information and unstructured relation mentions, and the

learned embeddings can capture certain semantic relevance

among entities, relations and even words in relation

mentions.

1 http://wordnet.princeton.edu/.
2 https://www.freebase.com/.
3 http://rtw.ml.cmu.edu/rtw/.
4 http://www.itl.nist.gov/iad/mig/tests/ace/.
5 http://www.itl.nist.gov/iaui/894.02/relatedprojects/muc/.
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Related Work

Knowledge population research can generally be grouped into

three categories according to the resources they use: text-

based knowledge extraction, repository-based knowledge

inference and hybrid-based knowledge population. As their

individual names imply, the first research approach extracts

the relations between two recognized entities from text cor-

pora, the second takes advantage of the link patterns within a

knowledge graph to infer new triplets, and the third method

aims to exploit both the structure andunstructured information

from both the text corpora and the knowledge graph. This

paper contributes a novel embedding model for hybrid-based

knowledge population, which is closest in methodology to the

second and the third research communities, and we therefore

conduct experiments that primarily focus on comparing our

approach with several state-of-the-art techniques discussed in

sections ‘‘Repository-Based Knowledge Inference’’ and

‘‘Hybrid-Based Knowledge Population’’.

Text-Based Knowledge Extraction

There exists a huge amount of unstructured electronic texts on

the internet. To better understand these online data, we would

like to create an intelligent system that can annotate all the data

with the structure of our interest. Generally, knowledge of

relations between named entities is of the most interest. A

number of off-the-shelf software packages are available to

help recognize entities in texts, so further research is then to

identify the semantic relations between a pair of annotated

entities. However, before we learn how to extract relations

with supervised learning, a portion of the data should first be

annotated, and there are two main branches of this research,

corpus-based extraction and distantly supervised extraction.

Corpus-Based Extraction

Traditional approaches compare the performance of rela-

tion extraction on publicly available corpora, including

ACE and MUC, which have previously been manually

annotated by domain experts. These approaches choose

different features extracted from the texts, like syntactic

[17], kernel [37] or semantic parser features [13], and adopt

discriminative classifiers, such as perceptrons and support

vector machines (SVM) to help predict the relations. Sar-

awagi [27] provides a comprehensive survey of this branch

of research. In addition, with recent advances in deep

learning, there has been some research into exploring the

creation of various artificial neural networks, such as

convolutional neural networks (CNN) [35] and long short-

term memory (LSTM) Networks [36], to achieve better

performance on the SemEval-2010 task [14].

Distantly Supervised Extraction

Mintz et al. [23] firstly adopt Freebase to distantly super-

vise Wikipedia to automatically generate annotated cor-

pora. The basic alignment assumption is that if a pair of

entities participates in a relation, all sentences that mention

these entities in Wikipedia are labeled by the relation

name, taken from Freebase. A variety of textual features

can then be extracted and used to learn a multi-class

logistic regression classifier. Inspired by multi-instance

learning, Riedel et al. [26] relax the strong assumption and

replace all sentences with at least one sentence. Hoffmann

et al. [15] point out that many entity pairs have more than

one relation and therefore extended the multi-instance

learning framework to the multi-label scenario. Surdeanu

et al. [29] proposed a novel approach to multi-instance

multi-label learning for relation extraction, which jointly

models all the sentences in texts and all labels in knowl-

edge bases for a given entity pair. The latest research [8]

points out that the distant supervision paradigm still suffers

from sparse and noisy features. Whereas Fan et al. [8] fix

the issue by means of the low-dimensional matrix factor-

ization, as discussed in their paper, the approach does not

handle large-scale datasets as well.

Repository-Based Knowledge Inference

This approach aims to self-infer new beliefs based on

knowledge repositories without the use of extra texts. It has

two categories, namely graph-based inference models and

embedding-based inference models. The principal differ-

ences between them are:

• Symbolic Representation Versus Distributed Represen-

tation: Graph-based models regard the entities and

relations as atomic elements and represent them in a

symbolic framework. In contrast, embedding-based

models explore distributed representations via learning

a low-dimensional continuous vector representation for

each entity and relation.

• Relation-Specific Versus Open-Relation: Graph-based

models aim to induce rules or paths for a specific

relation first, and then infer corresponding new beliefs.

On the other hand, embedding-based models encode all

relations into the same embedding space and conduct

inference without any restriction on some specific

relation.

Graph-Based Inference

Graph-based inference models generally learn the repre-

sentation for specific relations from the knowledge graph.
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N-FOIL [25] learns first-order Horn clause rules to infer

new beliefs from the known ones. So far, it has helped to

learn approximately 600 such rules. However, its ability to

perform inference over large-scale knowledge repositories

is currently still very limited.

PRA [11, 19, 20] is a data-driven random walk model

which follows the paths from the head entity to the tail

entity on the local graph structure to generate nonlinear

feature combinations representing the labeled relation, and

uses logistic regression to select the significant features

which contribute to classifying other entity pairs belonging

to the given relation.

Embedding-Based Inference

Embedding-based inference models usually design various

scoring functions frðh; tÞ to measure the plausibility of a

triplet \h; r; t[ . The lower the dissimilarity of the

scoring function frðh; tÞ is, the higher the compatibility of

the triplet will be.

Unstructured [4] is a naive model which exploits the

occurrence information of the head and the tail entities

without considering the relation between them. It defines a

scoring function jjh� tjj, and this model obviously cannot

discriminate a pair of entities involving different relations.

Therefore, Unstructured is commonly regarded as the

baseline approach.

Distance Model (SE) [5] uses a pair of matrices, i.e.,

ðWrh;WrtÞ, to characterize a relation r. The dissimilarity of

a triplet is calculated by jjWrhh�Wrttjj1. As pointed out by
Socher et al. [28], the separating matrices Wrh and Wrt

weaken the capability of capturing correlations between

entities and corresponding relations, even though the model

takes the relations into consideration.

Single Layer Model proposed by Socher et al. [28] thus

aims to alleviate the shortcomings of the Distance Model

by means of the nonlinearity of a single hidden layer neural

network gðWrhhþWrttþ brÞ, in which g ¼ tanh. The

linear output layer then gives the scoring function:

uTr gðWrhhþWrttþ brÞ.
Bilinear Model [16, 30] is another model that tries to fix

the issue of weak interaction between the head and tail

entities caused by Distance Model with a relation-specific

bilinear form: frðh; tÞ ¼ hTWrt.

Neural Tensor Network (NTN) [28] works with a general

scoring function: frðh; tÞ ¼ uTr gðhTWrtþWrhhþWrttþ
brÞ, which combines the Single Layer Model and the Bi-

linear Model. This model is more expressive as the second-

order correlations are also taken into consideration as part

of the nonlinear transformation function, but the compu-

tational complexity is rather high.

TransE [4] is a canonical model different from all the

other prior arts, which embeds relations into the same vector

space of entities by regarding the relation r as a translation

from h to t, i.e., hþ r ¼ t. It works well on the beliefs with a

ONE-TO-ONE mapping property but performs badly on

multi-mapping beliefs. Given a series of facts associated

with a ONE-TO-MANY relation r, e.g., \h; r; t1 [ ;

\h; r; t2 [ ; :::;\h; r; tm [ , TransE tends to represent the

embeddings of entities on the MANY-side extreme close to

each other, which are hardly discriminated.

TransM [9] leverages the structure of the whole

knowledge graph and adjusts the learning rate, which is

specific to each relation, based on the multiple mapping

property of the relation.

TransH [32] is the state-of-the-art approach, to the best

knowledge of the authors. It improves TransE by modeling

a relation as a hyperplane, which makes it more flexible

with regard to modeling beliefs with multi-mapping

properties.

Hybrid-Based Knowledge Population

Due to the diverse feature spaces between unstructured

texts and structured beliefs, the key challenge of connect-

ing natural language and knowledge is to be able to project

the features into the same space and to merge them toge-

ther for knowledge population. Fan et al. [7] have recently

proposed that embedding representations for both relations

and mentions can be jointly learned to predict unknown

relations between entities in NELL. However, the func-

tionality of their approach is limited to the relation pre-

diction task, as the correlations between entities and

relations are ignored. Therefore, this could be improved by

a more comprehensive model that can simultaneously

consider entities, relations and even relation mentions, and

can integrate the heterogeneous resources to support mul-

tiple subtasks of knowledge population, such as entity

inference, relation prediction and triplet classification.

Theory

The motivation behind subsequent theory is that not

each belief that is learned, i.e., \head entity, relation,

tail entity, mention[, subsequently abbreviated as

\h; r; t;m[ , is perfect and complete enough [10].

Modeling the probability of each belief is therefore

investigated, i.e., Pr(h, r, t, m). It is assumed that

Pr(h, r, t, m) is collaboratively influenced by Pr(h|r, t),

Pr(t|h, r) and Pr(r|h, t, m), where Pr(h|r, t) stands for the

conditional probability of inferring the head entity h given
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the relation r and the tail entity t, Pr(t|h, r) represents the

conditional probability of inferring the tail entity t given

the head entity h and the relation r, and Pr(r|h, t, m)

denotes the conditional probability of predicting the rela-

tion r between the head entity h and the tail entity t with the

relation mention m extracted from free texts. Therefore, we

define that the probability of a belief equal to the geometric

mean of Pr(h|r, t)Pr(r|h, t, m)Pr(t|h, r) as shown in the

subsequent equation,

Prðh; r; t;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Prðhjr; tÞPrðrjh; t;mÞPrðtjh; rÞ3
p

: ð1Þ

Suppose that we have a certain repository D, such as

WordNet, which contains thousands of beliefs validated by

experts. The learning objective is intuitively set to maxi-

mize Lmax, where

Lmax ¼
Y

\h;r;t;m[2D
Prðh; r; t;mÞ: ð2Þ

In many cases, it is also possible to automatically construct

much larger but imperfect knowledge bases via crowd-

sourcing (Freebase) and machine learning techniques

(NELL). However, each belief of NELL has a confidence-

weighted score c to indicate its plausibility to some extent.

Therefore, we propose an alternative goal which aims to

minimize Lmin, in which,

Lmin ¼
Y

\h;r;t;m;c[2D

1

2
½Prðh; r; t;mÞ � c�2: ð3Þ

To facilitate the optimization progress, we prefer using the

log likelihood of Lmax and Lmin, and the learning targets

can be further processed as follows,

arg max
h;r;t;m

logLmax

¼ arg max
h;r;t;m

X

\h;r;t;m[2D
logPrðh; r; t;mÞ

¼ arg max
h;r;t;m

X

\h;r;t;m[2D

1

3
½logPrðhjr; tÞ

þ logPrðrjh; t;mÞ þ logPrðtjh; rÞ�;

ð4Þ

arg min
h;r;t;m

logLmin

¼ arg min
h;r;t;m

X

\h;r;t;m;c[2D

1

2
½logPrðh; r; t;mÞ � log c�2

¼ arg min
h;r;t;m

X

\h;r;t;m;c[2D

1

2

1

3
½logPrðhjr; tÞ

�

þ logPrðrjh; t;mÞ þ logPrðtjh; rÞ� � log cg2:
ð5Þ

The advantage of the conversions above is that the factors

can be separated out, compared with Eq. (1), and what

remains is to identify the approaches to model Pr(h|r, t),

Pr(r|h, t, m) and Pr(t|h, r).

Pr(r|h, t, m) utilizes the data from two different

resources to predict the relation. If the concurrence of the

two entities (h and t) in knowledge bases is independent of

the appearance of the relation mention m from free texts,

we can heuristically factorize Pr(r|h, t, m) as shown by

Eq. (6),

Prðrjh; t;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Prðrjh; tÞPrðrjmÞ
p

: ð6Þ

The next aspect is to formulate Pr(h|r, t), Pr(r|h, t),

Pr(t|h, r) and Pr(r|m), respectively.

Figure 1a illustrates the traditional way of recording

knowledge as triplets. The triplets \h; r; t[ can construct

a knowledge graph in which entities (h and t) are nodes and

the relation (r) between them is a directed edge from the

head entity (h) to the tail entity (t). This kind of symbolic

representation, while being very efficient for storing, is not

flexible enough for statistical learning approaches [5].

However, once each element, including entities and rela-

tions in the knowledge repository, has been projected into

the same embedding space, we can use,

Dðh; r; tÞ ¼ �jjhþ r� tjj þ a; ð7Þ

This is a simple vector operation to measure the distance

between hþ r and t, in which h, r and t are encoded in

d-dimensional vectors, and a is the bias parameter. To

estimate the conditional probability of t given h and r, i.e.,

Pr(t|h, r), we need to adopt the softmax function6 as

follows,

Prðtjh; rÞ ¼ expDðh;r;tÞ
P

t02Et
expDðh;r;t0Þ ; ð8Þ

where Et is the set of tail entities which contains all pos-

sible entities t0 appearing in the tail position. Similarly,

Pr(h|r, t) and Pr(r|h, t) can be regarded as,

Prðhjr; tÞ ¼ expDðh;r;tÞ
P

h02Eh
expDðh0;r;tÞ ð9Þ

and,

Prðrjh; tÞ ¼ expDðh;r;tÞ
P

r02R exp
Dðh;r0;tÞ ; ð10Þ

in which Eh is the set of head entities which contains all

possible entities h0 appearing in the head position, and R is

the set of all candidate relations r0.
On the other hand, Fig. 1c shows that free texts can

provide useful contexts between two recognized entities,

but the one-hot7 feature space is rather high and sparse.

6 http://en.wikipedia.org/wiki/Softmax_function.
7 http://en.wikipedia.org/wiki/One-hot.
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Therefore, each word in relation mentions can also be

projected into the same embedding space of entities and

relations. To measure the similarity between the mention

m and the corresponding relation r, we adopt the inner

product of their embeddings, as shown by Eq. (11),

Fðr;mÞ ¼ WT/ðmÞrþ b; ð11Þ

where W is the matrix of Rnv�d containing nv vocabularies

with d-dimensional embeddings, /ðmÞ is the sparse one-

hot representation of the mention indicating the absence or

presence of words, r 2 Rd is the embedding of relation r,

and b is the bias parameter. Similar to Eqs. (8), (9) and

(10), the conditional probability of predicting relation

r given mention m, i.e., Pr(r|m) can be defined as,

PrðrjmÞ ¼ expFðr;mÞ
P

r02R exp
Fðr0;mÞ : ð12Þ

Above all, we can finally model the probability of a belief

via jointly embedding the entities, relations and even the

words in mentions as demonstrated in Fig. 1b.

Algorithm

To search for the optimal solutions of Eqs. (4) and (5), we

can use stochastic gradient descent (SGD) to update the

embeddings of entities, relations and words of mentions

in iterative fashion. However, it is computationally

intensive to calculate the normalization terms in Pr(h|r, t),

Pr(r|h, t), Pr(t|h, r) and Pr(r|m) according to the

definitions given in Eqs. (8), (9), (10) and (12), respec-

tively. For instance, if we directly calculate the value of

Pr(h|r, t) for just one belief, tens of thousands expDðh0;r;tÞ

need to be revalued, as there are tens of thousands can-

didate entities h0 in Eh.

Enlightened by the work of Mikolov et al. [21], we have

found an efficient approach that adopts the negative sam-

pling technique to approximate the conditional probability

functions, i.e., Eqs. (8), (9), (10) and (12), by transforming

them to binary classification problems shown in the sub-

sequent equations,

logPrðhjr; tÞ � logPrð1jh; r; tÞ

þ
X

k

i¼1

Eh0
i
Prðh02EhÞ logPrð0jh0i; r; tÞ;

ð13Þ

logPrðtjh; rÞ � logPrð1jh; r; tÞ

þ
X

k

i¼1

Et0
i
Prðt02EtÞ logPrð0jh; r; t0iÞ;

ð14Þ

logPrðrjh; tÞ � logPrð1jh; r; tÞ

þ
X

k

i¼1

Er0
i
Prðr02RÞ logPrð0jh; r0i; tÞ;

ð15Þ

logPrðrjmÞ � logPrð1jr;mÞ

þ
X

k

i¼1

Er0
i
Prðr02RÞ logPrð0jr0i;mÞ:

ð16Þ

In the above equations, we sample k negative beliefs and

discriminate them from the positive case. For the simple

Fig. 1 Whole framework of belief embedding. a shows a fragment of

knowledge graph; c is a snatch of Wiki which describes the

knowledge graph of a, b illustrates how the belief

\Maple Leafs; home town;Toronto; team based in[ is projected

into the same embedding space
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binary classification problems mentioned above, we choose

the logistic function with the offset � shown in Eq. (17) to

estimate the probability that the given triplet \h; r; t[ is

correct:

Prð1jh; r; tÞ ¼ 1

1þ exp�Dðh;r;tÞ þ �; ð17Þ

and with the offset g shown in Eq. (18) to tell the proba-

bility of the occurrence of r and m:

Prð1jr;mÞ ¼ 1

1þ exp�Fðr;mÞ þ g: ð18Þ

The pseudocode of the framework of the PBE learning

algorithm is given in Algorithm 1.

ALGORITHM 1 : The Learning Algorithm of PBE
Input:

Training set Δ = {(h, r, t, m, c)}, entity set E, relation
set R, vocabulary set V of relation mentions; dimension
of embeddings d, number of negative samples k, learning
rate γ, maximum epoches n; the bias α and β, the offset
ε and η.

1: foreach e ∈ E do
2: e := Uniform( −6√

d
, 6√

d
)

3: end foreach
4: foreach r ∈ R do
5: r := Uniform( −6√

d
, 6√

d
)

6: end foreach
7: foreach v ∈ V do
8: v := Uniform( −6√

d
, 6√

d
)

9: end foreach
10: i := 0
11: while i < n do
12: foreach <h, r, t, m, c> ∈ Δ do
13: foreach j ∈ range(k) do
14: Negative sampling: <h′

j , r, t, m> ∈ Δ′
h

/*Δ′
h is the set of k negative beliefs replacing h*/

15: Negative sampling: <h, r′
j , t, m> ∈ Δ′

r

16: Negative sampling: <h, r, t′
j , m> ∈ Δ′

t

17: end foreach
18: Gradient ascent:

∑
h,r,t,h′,r′,t′,v∈m ∇ log Pr(h, r, t, m

according to Equation (4)
OR

:tnecsedtneidarG:91 ∑
h,r,t,h′,r′,t′,v∈m ∇[log Pr(h, r, t, m) − log c]2

according to Equation (5)
/*Updating embeddings of <h, r, t, m> ∈
Δ; <h′, r, t, m> ∈ Δ′

h; <h, r′, t, m> ∈
Δ′

r; <h, r, t′, m> ∈ Δ′
t with γ and the batch

gradients derived from Equation (13), (14), (15)
and (16).*/

20: end foreach
21: i++
22: end while
Output:

All the embeddings of h, t, r and v, where h, t ∈ E, r ∈ R
and v ∈ V .

Experiment

In addition to using the efficient SGD algorithm, the

learned embeddings calculated by PBE can contribute

toward more effective results on multiple subtasks of

knowledge population, such as entity inference, relation

prediction and triplet classification.

• Entity inference: Given an incomplete triplet, like

\h; r; ?[ or \?; r; t[ , the subtask aims to infer the

missing entities to complete the triplet.

• Relation prediction: Given a pair of entities and the text

mentions indicating the semantic relations between

them, i.e., \h; ?; t;m[ , this subtask predicts the best

relations of the two entities.

• Triplet classification: This task calculates whether a

completed triplet is correct or not (\h; r; t[ ? 1 : 0).

Entity Inference

One of the benefits of knowledge embedding is that simple

vector operations can apply to entity inference, which

contributes to knowledge graph completion. For example,

to identify which entity h 2 Eh is the exact head entity

given the relation r and the entity t, we just need to com-

pute the arg max
h2Eh

Prðhjr; tÞ, with the help of the entity and

relation embeddings. In the meanwhile, arg max
t2Et

Prðtjh; rÞ

aims to identify the best tail entity given the head entity

h and the relation r.

Dataset

To demonstrate the wide adaptability of our proposed

approach, we prepare four datasets, i.e., NELL-50K, WN-

100K, FB-500K and NELL-1M from the repositories of

NELL [6], WordNet [22] and Freebase [1, 2], with various

sizes, as shown in Table 1. NELL [24], designed and

maintained by Carnegie Mellon University, is a system

which runs 24 hours/day and never stops learning beliefs

from the internet. Since the starting date of January 2010, it

has acquired a knowledge repository with over 80 million

confidence-weighted beliefs so far. The dataset we adopt in

this paper, NELL-50K, contains about fifty thousand

training beliefs from NELL, and each belief has been

validated to be true. We also extract a much larger dataset,

(NELL-1M), with one million training examples from

NELL, where each belief is automatically learned by

machine learning and weighted ranging (0.5, 1.0). WN-

100K was created by experts from the overall WordNet

corpus and has only 11 kinds of relations but more entities.
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Therefore, it is a sparse repository in which fewer entities

have connections. The final dataset (FB-500K8) we use

was released by Bordes et al. [4]. It is a large but dense,

crowdsourcing dataset extracted from Freebase, in which

almost every two entities have connections, and each belief

is a triplet without a confidence score.

Table 1 shows the statistics of these four datasets. The

statistical characteristic of these datasets is different, which

may lead to variance in the tuning parameters.

Metric

For each test belief, all the other entities that appear in the

training set take turns to replace the head entity. This

results in the production of a set of candidate triplets. The

plausibility of each candidate triplet is firstly computed by

various scoring functions, such as Pr(h|r, t) in PBE, and

then sorted in ascending order. Finally, the ground truth

triplet is identified and its rank recorded. The same is

followed when replacing the tail entity, so that mean results

can be acquired. We use two metrics, i.e., Mean Rank and

Mean Hit@10 (the proportion of ground truth triplets that

rank in the Top 10), to measure the performance. However,

the results measured by those metrics are relatively raw, as

the procedure above tends to generate false negative tri-

plets. In other words, some of the candidate triplets rank

rather higher than the ground truth triplet just because they

also appear in the training set. Therefore, those triplets are

filtered out to be able to report more reasonable results.

Performance

We compare PBEwith the state-of-the-art TransHmethod, as

mentioned in section ‘‘Repository-Based Knowledge Infer-

ence,’’ by evaluating the performance of the NELL-50K,

WN-100K, FB-500K and NELL-1M datasets. We tune the

parameters of each previousmodel based on the validation set

and select the combination of parameters which leads to the

best performance.Tomakevalid and responsible comparisons

between PBE and the state-of-the-art approach TransH, we

requested that its authors [32] re-evaluate their systemwith all

the four datasets and to report the best results. This therefore

represents a very accurate comparison. For PBE, several

combinations of parameters were tried: d ¼ f20; 50; 100g,
c ¼ f0:1; 0:05; 0:01; 0:005g and norm ¼ fL1; L2g, and

finally, chose a parameter set of d ¼ 50, c ¼ 0:01, norm ¼ L2
for NELL-50K and WN-100K datasets, and d ¼ 100,

c ¼ 0:01, norm ¼ L2 for FB-500K and NELL-1M datasets

to conduct further experiments.

All experiments are conducted on awork station equipped

with an Intel Core i7 2.0GHz processor (8 cores), 32GB

DDR3 1600 RAM and a 500 GB SSD. It takes 210.10,

320.65, 1941.44 and 5159.34 s to train the embeddings of

beliefs in NELL-50K, WN-100K, FB-500K and NELL-

1M, respectively. Moreover, if they are grouped into two

categories, the datasets (WN-100K and FB-500K) which

only contain triplets, and the datasets (NELL-50K and

NELL-1M)which also have relationmentions, it can be seen

by Fig. 2 that the training time consumed by PBE increases

along with the volume of data used in each category.

Tables 2, 3, 4 and 5 demonstrate that PBE outperforms

all the state of the arts, including TransE [4], TransM [9]

and TransH [32] and achieves significant improvements on

all datasets. Overall, The relative increments performed by

PBE compared with the best results of prior arts under all

metrics are:

Fig. 2 Time consumed in seconds by learning embeddings with PBE

on WN-100K, FB-500K, NELL-50K and NELL-1M, respectively

8 We have changed the original name of the dataset (FB15K), so as

to follow the naming conventions in our paper. Related studies using

this dataset can be found at https://www.hds.utc.fr/everest/doku.

php?id=en:transe.

Table 1 Statistics of the

datasets used for the entity

inference task

Dataset NELL-50K WN-100K FB-500K NELL-1M

#(ENTITIES) 29,904 38,696 14,951 82,691

#(RELATIONS) 233 11 1345 218

#(TRAINING EX.) 57,356 112,581 483,142 1,000,000

#(VALIDATING EX.) 10,710 5218 50,000 24,864

#(TESTING EX.) 10,711 21,088 59,071 24,863
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Table 2 Entity inference results on the NELL-50K dataset

Dataset NELL-50K

Metric Mean Rank Mean HIT@10

Raw Filter Raw (%) Filter (%)

TransE [4] 2436/29,904 2426/29,904 18.9 19.6

TransM [9] 2296/29,904 2,285/29,904 20.5 21.3

TransH [32] 2185/29,904 2072/29,904 21.6 28.8

PBE 2078/29,904 1996/29,904 22.5 26.4

Table 3 Entity inference results on the WN-100K dataset

Dataset WN-100K

Metric Mean Rank Mean HIT@10

Raw Filter Raw (%) Filter (%)

TransE [4] 10,623/38,696 10,575/38,696 3.8 4.1

TransM [9] 14,586/38,696 13,276/38,696 1.8 2.0

TransH [32] 12,542/38,696 12,463/38,696 2.3 2.6

PBE 8462/38,696 8409/38,696 9.0 10.1

Table 4 Entity inference results on the FB-500K dataset

Dataset FB-500K

Metric Mean Rank Mean HIT@10

Raw Filter Raw (%) Filter (%)

TransE [4] 243/14,951 125/14,951 34.9 47.1

TransM [9] 196/14,951 93/14,951 44.6 55.2

TransH [32] 211/14,951 84/14,951 42.5 58.5

PBE 165/14,951 61/14,951 50.5 64.6

Table 5 Entity inference results on the NELL-1M dataset

Dataset NELL-1M

Metric Mean Rank Mean HIT@10

Raw Filter Raw (%) Filter (%)

TransE [4] 29,059/82,691 29,052/82,691 6.5 6.6

TransM [9] 28,435/82,691 28,129/82,691 5.4 5.5

TransH [32] 27,455/82,691 26,980/82,691 7.8 8.7

PBE 7528/82,691 7485/82,691 8.7 9.0
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– NELL-50K: {Mean Rank Raw: 4:9% *, Hit@10 Raw:

4:2% *, Mean Rank Filter: 3:7% *, Hit@10 Filter:

8:3% +};
– WN-100K: {Mean Rank Raw: 20:3% *, Hit@10 Raw:

136:8% *, Mean Rank Filter: 20:5% *, Hit@10

Filter: 146:3% *};
– FB-500K: {Mean Rank Raw: 15:8% *, Hit@10 Raw:

27:3% *, Mean Rank Filter: 13:3% *, Hit@10 Filter:

10:4% *};
– NELL-1M: {Mean Rank Raw: 72:5% *, Hit@10 Raw:

11:5% *, Mean Rank Filter: 72:2% *, Hit@10 Filter:

3:4% *}

Relation Prediction

The scenario of this subtask is that given a pair of entities

and a short text/mention indicating the correct relations, we

calculate the arg max
r2R

Prðrjh; tÞPrðrjmÞ to predict the best

relations.

Dataset

We continue using the datasets mentioned in section

‘‘Entity Inference’’ to compare the performance between

all the competing methods. But as the words in relation

mentions are also of interest in this subtask, the vocabulary

size of relation mentions in each dataset is given in Table 6

as follows, excludingWN-100K and FB-500K, which only

contain triplets as beliefs, and therefore, the sizes of their

vocabulary are null.

Metric

We compare the performance between our models and

other state-of-the-art approaches mentioned in sections

‘‘Repository-Based Knowledge Inference’’ and ‘‘Hybrid-

Based Knowledge Population’’, including TransE [4],

TransM [9], TransH [32] and JRME [7], using the fol-

lowing metrics,

• Average Rank: Each candidate relation will have a

score, as calculated by Eq. (7). These are sorted in

ascending order and compared with the corresponding

ground truth belief. For each belief in the testing set,

the rank of the correct relation is acquired. The average

rank is an aggregative indicator, to some extent, that

can be used judge the overall performance of an

approach with regard to relation extraction.

• Hit@10: Besides the average rank, scientists from

industry are more concerned with the accuracy of

extraction when selecting the Top 10 relations. This

metric shows the proportion of beliefs that we predict

the correct relation that are ranked in the Top 10.

• Hit@1: This is a more strict metric that can be

calculated by an automatic system, since it demon-

strates the accuracy when just picking the first predicted

relation in the sorted list.

Performance

Tables 7, 8, 9 and 10 illustrate the results of relation pre-

diction experiments with NELL-50K, WN-100K, FB-

500K and NELL-1M datasets, respectively. All of them

show that PBE has the best performance when compared

with all the latest approaches, including the state-of-the-art

JRME [7] method. The relative increments are

– NELL-50K: {Mean Rank: 59:7% *, Hit@10: 10:0% *,
Hit@1: 30:0% *};

– WN-100K: { Mean Rank: 41:1% *, Hit@10: 0:1% *,
Hit@1: 276:2% * };

– FB-500K: { Mean Rank: 95:7% *, Hit@10: 148:2% *,
Hit@1: 327:6% * };

– NELL-1M: { Mean Rank: 20:6% *, Hit@10: 3:5% *,
Hit@1: 19:3% * }.

Moreover, the leading results of PBE and JRME on NELL

datasets also provide evidence to show that text mentions

can make a big contribution with regard to predicting

correct relations.

Table 6 Statistics of the datasets used for the relation prediction task

Dataset NELL-50K WN-100K FB-500K NELL-1M

#(ENTITIES) 29,904 38,696 14,951 82,691

#(RELATIONS) 233 11 1345 218

#(VOCABULARY) 8948 – – 12,354

#(TRAINING EX.) 57,356 112,581 483,142 1,000,000

#(VALIDATING EX.) 10,710 5218 50,000 24,864

#(TESTING EX.) 10,711 21,088 59,071 24,863
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Triplet Classification

Triplet classification is another inference-related task pro-

posed by Socher et al. [28], which focuses on searching a

relation-specific threshold rr to identify whether a triplet

\h; r; t[ is plausible. If the probability of a test triplet

(h, r, t) computed by Pr(h|r, t)Pr(r|h, t)Pr(t|h, r) is below

the relation-specific threshold rr, it is predicted as positive

(i.e., plausible), otherwise it is predicted to be negative

(i.e., implausible).

Table 7 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated by the metrics of average rank, Hit@10 and

Hit@1 with NELL-50K dataset

Dataset NELL-50K

Metric AVG. R. HIT@10 (%) HIT@1 (%)

TransE [4] 131.8/233 16.3 3.0

TransM [9] 70.2/233 18.9 4.3

TransH [32] 46.3/233 20.0 5.1

JRME [7] 6.2/233 87.8 60.2

PBE 2.5/233 96.6 78.3

Table 8 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated by the metrics of average rank, Hit@10 and

Hit@1 with WN-100K dataset

Dataset WN-100K

Metric AVG. R. HIT@10 (%) HIT@1 (%)

TransE [4] 3.8/11 98.3 15.1

TransM [9] 4.6/11 97.5 14.8

TransH [32] 3.4 /11 99.0 19.3

JRME [7] 3.9/11 99.0 15.9

PBE 2.0/11 99.1 72.6

Table 9 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated by the metrics of average rank, Hit@10 and

Hit@1 with FB-500K dataset

Dataset FB-500K

Metric AVG. R. HIT@10 (%) HIT@1 (%)

TransE [4] 762.7/1345 7.3 1.9

TransM [9] 402.3 /1345 13.4 3.2

TransH [32] 79.5/1345 39.2 15.6

JRME [7] 60.9/1345 27.4 7.2

PBE 2.6/1345 97.3 66.7

Table 10 Performance of relation prediction on TransE, TransM, TransH, JRME and PBE evaluated by the metrics of average rank, Hit@10 and

Hit@1 with NELL-1M dataset

Dataset NELL-1M

Metric AVG. R. HIT@10 (%) HIT@1 (%)

TransE [4] 70.4/218 5.4 0.4

TransM [9] 65.5/218 18.7 3.4

TransH [32] 62.9/218 26.8 5.8

JRME [7] 7.0/218 89.0 54.5

PBE 5.8/218 92.1 65.0
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Dataset

It should be emphasized that the head or the tail entity can

be randomly replaced with another one to produce a neg-

ative training example, but in order to build much tougher

and valid validation and testing datasets, we add the con-

straint that the chosen replacement entity should appear

once at the same position. For example, (Pablo Picaso,

nationality, USA) is a potential negative example rather

than an obvious nonsense example like (Pablo Picaso,

nationality, Van Gogh), given a positive triplet (Pablo

Picaso, nationality, Spain). Table 11 shows the statistics of

the standard datasets that were used for evaluating models

on the triplet classification subtask.

Metric

Three metrics, i.e., Classification Accuracy, Precision-re-

call Curve and Area Under Curve (AUC), are used to

measure the performance of the methods being compared.

– Classification Accuracy: The correctness of each triplet

\h; r; t[ can be summarized by comparing the

probability of the triplet and the relation-specific

threshold rr, which can be searched for by maximizing

the classification accuracy of the validation triplets

which belong to the relation r.

– Precision-recall Curve: This measures the global

classification performance by sorting all the triplets

based on their estimated probability. We consider the

positive test triplets and draw the precision-recall curve

for each approach.

– Area Under Curve (AUC): The AUC is a commonly

used evaluation metric for binary classification

problems like predicting a Buy or Sell decision (binary

decision). The interpretation here is that given a

random positive triplet and a negative triplet, the

AUC gives the proportion of the time that a correct

decision is made. It is less affected by sample balance

than accuracy. A perfect model will score an AUC of

1.0, while random guessing will score an AUC of

around 0.5, meaning there is 50% chance of being

correct.

Performance

We use the best combination of parameter settings in the

entity inference task: d ¼ 100, c ¼ 0:01, norm ¼ L2 to

generate the entity and relation embeddings, and learn the

best classification threshold rr for each relation r. Com-

pared with several of the latest approaches, i.e., TransH

[32], TransM [9] and TransE [4], the proposed PBE

approach still outperforms them within the metrics of

Classification Accuracy (ACC.) and Area Under Curve

(AUC), as shown in Tables 12 and 13. We also draw the

precision-recall curves, which indicate the capability of

global discrimination by ranking the distance of all the test

triplets, and Fig. 3 can intuitively show that PBE performs

much better than the other approaches.

Compared with several of the latest approaches, i.e.,

TransH [32], TransM [9] and TransE [4], the proposed

PBE approach outperforms with relative improvements of:

– NELL-50K: {Accuracy: 7:9% *, AUC: 37:9% *};
– WN-100K: {Accuracy: 5:6% *, AUC: 16:6% *};
– FB-500K: {Accuracy: 5:6% *, AUC: 21:2% *};
– NELL-1M: {Accuracy: 28:6% *, AUC: 31:8% *}.

Table 11 Statistics of the

datasets used for the triplet

classification task

Dataset NELL-50K WN-100K FB-500K NELL-1M

#(ENTITIES) 29,904 38,696 14,951 82,691

#(RELATIONS) 233 11 1345 218

#(TRAINING EX.) 57,356 112,581 483,142 1,000,000

#(TC VALIDATING EX.) 21,420 10,436 100,000 49,728

#(TC TESTING EX.) 21,412 42,176 118,142 49,714

Table 12 Accuracy of triplet classification compared among several latest approaches: PBE, TransH, TransM and TransE

Dataset NELL-50K WN-100K FB-500K NELL-1M

Metric ACC. (%) ACC. (%) ACC. (%) ACC. (%)

TransE [4] 80.5 64.2 79.9 64.0

TransM [9] 82.0 57.2 85.8 64.8

TransH [32] 83.6 59.5 87.7 67.0

PBE 90.2 67.8 92.6 86.2
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Discussion

Besides observing the quantitative results performed by the

three tasks, i.e., entity inference, relation prediction and

triplet classification, we look forward to exploring the

essence of learning distributed representations of beliefs in

knowledge repositories. Our model assumes itself capable

of encoding not only structured knowledge graph infor-

mation, but also unstructured relation mentions, into con-

tinuous vector spaces, so that we can bridge the gap of one-

Table 13 AUC of triplet classification compared with several latest approaches: PBE, TransH, TransM and TransE

Dataset NELL-50K WN-100K FB-500K NELL-1M

Metric AUC AUC AUC AUC

TransE [4] 0.623 0.674 0.645 0.547

TransM [9] 0.683 0.610 0.772 0.558

TransH [32] 0.681 0.613 0.744 0.596

PBE 0.942 0.786 0.936 0.786
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Fig. 3 The precision-recall curves for triplet classification of PBE,

TransH, TransM and TransE on the four datasets: a The precision-

recall curves for triplet classification of PBE, TransH, TransM and

TransE on NELL-50K dataset. b The precision-recall curves for

triplet classification of PBE, TransH, TransM and TransE on

WN-100K dataset. c The precision-recall curves for triplet classifi-

cation of PBE, TransH, TransM and TransE on FB-500K dataset.

d The precision-recall curves for triplet classification of PBE, TransH,

TransM and TransE on NELL-1M dataset
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hot representations and expect to discover certain relevance

among entities, relations and even words in relation

mentions.

An intuitive way of revealing the relevance is to mea-

sure the L2-norm distance between embeddings of entities,

relations and words. For example, if we search the Top 10

nearest entities in NELL-50K to concept:stateor-

province:florida which is a state in the Southeast USA, we

can gain a ranked list of other states shown by Table 14,

instead of any other entity types. We also identify the same

phenomena in Tables 15 and 16, where PBE captures the

semantic similarities between relations or even relations

and words.

Conclusion

In this paper challenged the problem of embedding beliefs

which contain both structured knowledge and unstructured

free texts and propose an elegant and novel probabilistic

model to tackle this issue by measuring the probability of a

given belief \h; r; t;m[ . To efficiently learn the

embeddings for each entity, relation, and word in mentions,

we also adopt the negative sampling technique to transform

the original model and display the algorithm based on

stochastic gradient descent (SGD) to search for the optimal

solution. Extensive experiments on knowledge population

including entity inference, relation prediction and triplet

classification show that our proposed approach achieves

significant improvements on three large-scale repositories

by capturing the semantic relationships among entities,

relations and words in mentions, compared with other

state-of-the-art methods. And the essence of improvements

we discuss reveals that our model is capable of encoding

semantic relevance among entities, relations and even

words in relation mentions into belief embeddings, from

both structured knowledge graph information and

unstructured relation mentions.

We would be pleased to see further improvements of the

proposed model, which leaves open promising directions

for future work, such as taking advantage of the proba-

bilistic belief embeddings to enhance the studies of text

summarization, and open-domain question answering.
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Table 14 Top 10 nearest entities to concept:stateorprovince:florida

searched by the L2-norm distance between embeddings of entities in

NELL-50K dataset

Query entity concept:stateorprovince:florida

Top 10 nearest entities concept:stateorprovince:maryland

concept:stateorprovince:illinois

concept:stateorprovince:michigan

concept:stateorprovince:alabama

concept:stateorprovince:georgia

concept:stateorprovince:oregon

concept:stateorprovince:texas

concept:stateorprovince:missouri

concept:stateorprovince:colorado

concept:stateorprovince:massachusetts

Table 15 Top 10 nearest relations to concept : persongraduated-

school searched by the L2-norm distance between embeddings of

relations in NELL-50K dataset

Query relation concept:persongraduatedschool

Top 10 nearest

relations

concept:persongraduatedfromuniversity

concept:personattendsschool

concept:teamalsoknownas

concept:personmovedtostateorprovince

concept:organizationalsoknownas

concept:teammate

concept:politicsgroupconcernsissue

concept:hasbrother

concept:arteryarisesfromartery

concept:academicfieldusedbyeconomicsector

Table 16 Top 10 nearest words to concept : persongraduatedfro-

muniversity searched by the L2-norm distance between embeddings of

words in NELL-50K dataset

Query relation concept:persongraduatedfromuniversity

Top 10 nearest words in

mentions

graduate

austin

undergraduate

hopkins

lawrence

eton

suzette

graduated

mccarthy

educated
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Informed Consent Informed consent was not required as no humans

or animals were involved.

Human and Animal Rights This article does not contain any studies

with human participants or animals performed by any of the authors.
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