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1. Introduction 
 There is a popular belief that cepstral feature 

components are uncorrelated and thus can be 

modeled by a diagonal covariance GMM model. 

 Recently, full covariance GMM models have shown to 

provide advantage in speaker recognition system 

performance 
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1. Introduction 
 The feature coefficients are not fully uncorrelated.  
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1. Introduction 
 Sorted Eigenvalues demonstrating that most of the 

energy is accounted for by in the first few dimensions 
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1. Introduction 
 diagonal-covariance model is insensitive to the 

dominant direction of the data 
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1. Introduction 
 full covariance model take the dominant direction into 

account. 
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1. Introduction 
 Consider the dominant direction(q=1) of the data and 

considers the other direction as noise. 
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1. Introduction 
 Speaker dependent information resides within the first 

few dominant directions in the feature space. 

 Acoustic Factor Analysis (AFA) only consider the 

dominant directions of the feature space, providing 

more robustness to the noisy test data. 
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2. ACOUSTIC FACTOR ANALYSIS 
 Formulation 

the 𝑑 dimensional feature vector, 𝑥 , can be represented by 

𝑥 = 𝑊𝑦 + 𝜇 + 𝜖 

 W:  𝑑 × 𝑞 factor loading matrix, 𝑞 < 𝑑 

 𝜇: 𝑑 × 1 mean vector 

 𝜖~𝑁(0, Ψ)  noise component 

 𝑦~𝑁(0, 𝐼) acoustic factor 

 𝑥~𝑁(𝜇, Ψ + 𝑊𝑊𝑇) 
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2. ACOUSTIC FACTOR ANALYSIS 
 A mixture of AFA models 

    

 

 𝜋𝑔: g-th mixture weight 

 M: mixture number 

 𝑝(𝑥𝑛|𝑔)~𝑁(𝜇𝑔, 𝐶𝑔)     𝐶𝑔 = Ψ𝑔 + 𝑊𝑔𝑊𝑔
𝑇 
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2. ACOUSTIC FACTOR ANALYSIS 
 Probabilistic graphical model of a Mixture of Factor 

Analyzer (MFA) model 
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2. ACOUSTIC FACTOR ANALYSIS 
 Feature dimensionality reduction 

① Train a full covariance UBM model 𝜆0 

 

 

② Estimate noise variance for i-th mixture 
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2. ACOUSTIC FACTOR ANALYSIS 
 Feature dimensionality reduction 

③ Compute maximum likelihood estimation of the factor 

loading matrix 𝑊𝑖 of the i-th mixture 

 

 𝑈𝑞
(𝑖)

:  𝑑 × 𝑞 matrix  whose columns are the q leading 

eigenvectors of  Σ𝑖 

 Λ𝑞
(𝑖)

: diagonal matrix, contains the corresponding q eigenvalues 

 R: q× 𝑞 arbitrary orthogonal rotation matrix 
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2. ACOUSTIC FACTOR ANALYSIS 
 Feature dimensionality reduction 

④ Compute latent factors, the reduced version of  𝑥𝑛 can 

be obtained from the posterior mean of y 
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2. ACOUSTIC FACTOR ANALYSIS 
 Integration within the i-vector system 

 Conventionally, the i-Vectors are extracted using the 

zero and first order statistics, The zero order statistics 

for utterance s are extracted as: 

 

 The first order statistics are extracted as 
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2. ACOUSTIC FACTOR ANALYSIS 
 For the AFA model, the first order statistics are 

extracted as follows: 
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3. Isotropic Residual Noise Model 
 the noise covariance matrix  is Ψ𝑔 = 𝜎𝑔

2𝐼 

 In this model, assume Ψ𝑔 in each mixture is isotropic 

 The first order statistics  

 

 

where 𝐴𝑔
𝑇 = 𝑀𝑔

−1𝑊𝑔
𝑇 
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4. Diagonal Covariance Residual Noise Model 

 assume Ψ𝑔in each mixture is diagonal 

 The first order statistics  

 

 

 

where 𝐴𝑔
𝑇 = 𝑀𝑔

−1𝑊𝑔
𝑇Ψ𝑔

−1 
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5. Experimental results 
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 Effect of the Modeling Method 



5. Experimental results 
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 Variation of Acoustic Factor Dimension 



5. Experimental results 
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 System Fusion and Calibration 
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