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Probabilistic Models

Yann LeCun, Marc'Aurelio Ranzato, Deep Learning Tutorial,
ICML, Atlanta, 2013-06-16



Graphic models

* G=(V,E) represent joint
probabilities of V, with
conditionals or potentials M
represented by E

* Probabilistic variables
e Probabilistic inference

Graphical models and variational methods: Message-passing and
relaxations , ICML-2008 Tutorial

http://www.eecs.berkeley.edu/~wainwrig/icml08/tutorial_icm|08.html



Neural models

* G=(V,E) represents deterministic
inference

* Probabilistic interpolation: Gaussian,
Binomial, or MDN.

 Some ‘randomness’ on input, label,
hidden units
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Respective cons and pros

* Graphical model
* Clear definition of facts and their relations
* Easy to grow
 Difficult in inference

* Neural models
* Simple and Homogeneous units
e Quick inference
 Difficulty in training
* Less probabilistic



Some models are in both...

 RBM, DBN, DBM, SGN...
* Clear probabilistic interpolation
* Homogeneous units
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How to marriage them in more depth?

* For Bayesian models, hope simpler inference
* For neural models, hope more randomness

* These two directions seem prefer the same architecture: stochastic
NN.



Variational Bayesian

log pe (xV) = D1 (g (2[x D) ||pe(z|xD)) + £(0, ¢; xD)
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legpg(x(’i)) > L(0, qb;x(i)) _ 4]%(E|x)][— log q¢(z|x) +[10gp9(x._ z)]]
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* Mean-field variational approximation
* q(z|x)=a(z1|x)q(z2]x)...



Variational Bayesian with Auto-encoder

log pe(x'Y) = Drcr(qe(z[x?)||pe(z[x?)) + £(6, ¢p;xV)

ltlgjjg(}{(i)) > L(0, ¢ X(ij) —

Las(zlx) [~ 108 4o (2]x) +log pe(x, )]

N\

L(0.¢:x\V) = _DHL{be(Z‘X(i);HFS(Z)) + By (2]x0) [H%PQ(X@\Z)}

[E = g (€. X)] with € ~ p(€)

e Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In ICLR.

* Danilo J. Rezende, Shakir Mohamed, Daan Wierstra, Stochastic Backpropagation and
Approximate Inference in Deep Generative Models, ICMS 2014.



Variational Auto-encoder

[E — g¢,(£5x)] with € ~ p(€)

£P(0.¢:xV) = =D 1,(q¢(2xD)||pe(z)) +|+

where  z("Y = g4 (€D x) and €W ~ p(e)
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What have been changed?

* Bayesian perspective
* A encoder (parametric function) is used to map input x to code z, where the
variation p(z) is simpler than p(x).
With x, p(z|x) keeps simple
With z, conditional probability p(x|z) is simpler than x.
All seems simpler!
Model training becomes parameter adjustment, using BP.

* Neural model perspective
* Randomness
e Can we BP? Using MCMC, on the simple p(x]z).
* Seems a variational + MCMC



Extend to other encoder-decoder models
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RNN with latent variable
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Figure 1: Graphical illustrations of each operation of the VRNN: (a) computing the conditional
X Z prior using Eq. (5); (b) generating function using Eqg. (6); (c) updating the RNN hidden state using
ht :fﬁ_" (‘fﬁT (Kt } Lff'L (Et ) ) ht— l) Eq. (7); (d) inference of the approximate posterior using Eq. (9); (e) overall computational paths of
the VRNN.
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e Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., and Bengio, Y. (2015). A
recurrent latent variable model for sequential data. In NIPS, pages 2962-2970.



Stochastic Recurrent Networks
(STORNS)

 Bayer, J. and Osendorfer, C. (2014). Learning stochastic recurrent networks.
In NIPS Workshop on Advances in Variational Inference



Variational Recurrent AE (VRAE)

hey1 = tanh(W7, by + W21 + bene)
Hz = I.{';,LT‘F}'E:nd + b.te
EOQ(JL) — I"I";,;?_hcnd + bcr

ho = tanh(W'z +b,)
hit1 = tanh(ﬂ-'gth -+ I-‘I-""E;ri + bdec)
zy = sigm(W2,, he + bout)

ot

* Fabius, O. and van Amersfoort, J. R. (2014). Variational recurrent auto-
encoders. arXiv:1412.6581.

* Music generation



Variable Encoder-Decoder RNN
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e |ulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville, Yoshua Bengio, A
Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues, 2016/05/20



https://arxiv.org/find/cs/1/au:+Serban_I/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Sordoni_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Lowe_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Charlin_L/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Pineau_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Courville_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bengio_Y/0/1/0/all/0/1

Variational RNN LM :

“ 1 want to talk to you .
“ want to be with you . 7

“ do n't want to be with you . 7
1 do n’t want to be with you .
she did n’t want to be with him .

i went to the store to buy some groceries .
1 store to buy some groceries .
1 were to buy any groceries .

horses are to buy any groceries . he was silent for a long moment .

horses are to buy any animal . he was silent for a moment .

horses the favomjte any a‘nimall. it was quiet for a moment .
horses the favorite favorite animal . :
it was dark and cold .

horses are my favorite animal .
there was a pause .

it was my turn .

RNNs work <EODS>
1 T 'r
H Decoding Decoding Decoding
D LSTM  [»{LSTM [ LSTM
- Cell Cell Cell
RNNs work <EOS5>» RNNs work

* Bowman, S. R,, Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S.
(2015). Generating sentences from a continuous space. arXiv:1511.06349.



Variational image generation
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* DRAW: A Recurrent Neural Network For Image Generation
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Denoise AE
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Figure 1. An example x is corrupted to x. The autoen-
coder then maps it to y and attempts to reconstruct x.
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Guillaume Alain and Yoshua Bengio, What Regularized Auto-Encoders Learn from the Data Generating

Distribution



DAE can be

ORIGINAL

SAMPLED ORIGINAL

used to sampling x

SAMPLED




samples ) data
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Theorem 1. If Py, (X |X) is a consistent estimator of the true conditional distribution P(X|X)
and T, defines an ergodic Markov chain, then as the number of examples n — oo, the asymptotic
distribution w, (X ) of the generated samples converges to the data-generating distribution P(X).

* Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent, Generalized
Denoising Auto-Encoders as Generative Models.



Introducing latent variables

Heyi ~ Po(H|H,X,)

Yoshua Bengio et al., Deep Generative Stochastic

Xip1 ~ PSE(X|Ht+1)- Networks Trainable by Backprop.




Multi-step generation
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* Train DAE with random corruption
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symmetric corruption, the
conergence is a stationary point.

converge
* Equals to get stuck to minimum

e Reconstruct iteratively until
* It can be proved that with



Conclusions

* Graphical model and neural model are merging

 Both variational AE and denoise AE seem reasonable to recover data
distribution

* If we treat variational AE as a corruption in the encoding phase, then
seems it is a special denoise DAE. Is that true?

* How other regulations can be included in both training and decoding,
e.g., rythm.



