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Information pbottleneck

* A network rids noisy input data of extraneous details as If by squeezing the
Information through a bottleneck, retaining only the features most relevant

to general concepts.



The Information Bottleneck Method

Naftali Tishby, Fernando C. Pereira, and William Bialek



Relevant information

* We define the relevant information in a signal x € X as being the information that this signal
provides about another signal y € Y . Understanding the signal x requires more than just
predicting v, It also requires specifying which features of X play a role in the prediction.

* We formalize this problem as that of finding a short code for X that preserves the maximum

information about Y .
* That s, we squeeze the information that X provides about Y through a ‘bottleneck’ formed

by a limited set of codewords X". This approach yields an exact set of self consistent
equations for the coding rules X — X" and X — Y .

* The relevance variable, denoted here by Y , must not be independent from the original signal
X, namely they have positive mutual information I(X; Y).

(X~ X) I(X.Y)
I(X,Y)



Information bottleneck principle

* The relevance variable, denoted here by Y , must not be independent from the original signal
X, namely they have positive mutual information I(X; Y).
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* We would like our relevant quantization X™ to compress X as much as possible. In contrast to
the rate distortion problem, however, we now want this quantization to capture as much of
the information about Y as possible.

* The amount of information about Y in X" is given by

ZZ,, (y, %) log (’(” ')) I(X;Y).

p(y)p(

* We can find the optimal assignment by minimizing the functional
Llp(i|x)] = I(X; X) - BI(X;Y)



Deep Learning and the Information
Bottleneck Principle

Naftali Tishby, Noga Zaslavsky



DL and IB

* The goal of any supervised learning is to capture and efficiently represent the relevant information
In the Input variable about the output-label-variable. Namely, to extract an approximate minimal
sufficient statistics of the input with respect to the output.

* The information theoretic interpretation of minimal sufficient statistics suggests a principled way of
doing that: find a maximally compressed mapping of the input variable that preserves as much as
possible the information on the output variable.

* This is precisely the goal of the Information Bottleneck (IB) method.

* Basic questions about the design principles of deep networks, the optimal architecture, the number

of required layers, the sample complexity, and the best optimization algorithms, are not well
understood.



Relevant information in DNNSs
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Fig. 1. An example of a feedforward DNN with m hidden layers,
an input layer X and an output layer Y. The desired output, Y, is
observed only during the training phase through a finite sample of the joint
distribution, p(X,Y"), and is used for learning the connectivity matrices
between consecutive layers. After training, the network receives an input
X, and successively processes it through the layers, which form a Markov
chain, to the predicted output Y. I(Y;Y)/I(X:Y") quantifies how much
of the relevant information is captured by the network.




Information characteristics of the layers

* Each layer in a DNN processes inputs only from the previous layer, which means that the network
layers form a Markov chain.

* An immediate consequence of the DPI is that information about Y that is lost in one layer cannot be
recovered in higher layers. Namely, for any i=] it holds that

T(V;X)>1(YV:h))>1(Y:h)>1 (Y;f/)

* Achieving equality here is possible if and only if each layer is a sufficient statistic of its input. By
requiring not only the most relevant representation at each layer, but also the most concise
representation of the input, each layer should attempt to maximize I (Y:;h;) while minimizing
I (h;_,:h;) as much as possible.



Finite samples and generalization bounds
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Fig. 2. A qualitative information plane, with a hypothesized path of the
layers in a typical DNN (green line) on the training data. The black line
is the optimal achievable IB limit, and the blue lines are sub-optimal IB
bifurcations, obtained by forcing the cardinality of X or remaining in the
same representation. The red line corresponds to the upper bound on the
out-of-sample 1B distortion (mutual information on Y'), when training from
a finite sample. While the training distortion may be very low (the green
points) the actual distortion can be as high as the red bound. This is the
reason why one would like to shift the green DNN layers closer to the
optimal curve to obtain lower complexity and better generalization. Another
interesting consequence is that getting closer to the optimal limit requires
stochastic mapping between the layers.

A method for evaluating the network. Let N be a
given DNN, and denote by Dy, the IB distortion
of the network’s output layer, i.e. I(X:Y]Y) ,and
by Ry the representational complexity of the
output layer, i.e.1(X:Y). We can now define two
measures for the performance of the network in
terms of prediction and compression. The first
one is the generalization gap,

AG =Dy — D75 (n)
which bounds the amount of information about
Y that the network did not capture although it
could have. The second measure is the
complexity gap,

AC = Ry — R™ (n)

which bounds the amount of unnecessary
complexity in the network.



Finite samples and generalization bounds

* The empirical input layer of a DNN alone cannot guarantee good generalization even though it
contains more information about the target variable Y than the hidden layers, as its representation
of the data is too complex. Compression is thus necessary for generalization.

* Here is no reason to believe that current training algorithms for DNNs will reach the optimal point
of the IB finite sample bound.

* However, we do believe that the improved feature detection along the network’s layers corresponds
to Improvement on the information plane in this direction. In other words, when placing the layers
of a trained DNN on the information plane, they should form a path similar to the green curve in
figure 2.

* It is thus desirable to find new training algorithms that are based on the IB optimality conditions and
can shift the DNN layers closer to the optimal limit.



Opening the Black Box of Deep Neural
Networks via Information

Ravid Schwartz-Ziv, Naftali Tishby



Main results

* (i) the Stochastic Gradient Decent (SGD) optimization has two main phases. In the first and shorter
phase the layers increase the information on the labels(fitting), while in the second and much longer
phase the layer reduce the information on the input(compression phase).

* (i) The converged layers lie on or very close to the IB theoretical bound.

* (i) The main advantage of the hidden layers is computational, as they dramatically reduce the
stochastic relaxation times.

* (iv) The hidden layers appear to lie close to critical points on the IB bound.



Snapshots of layers In the information plane
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Figure 2: Snapshots of layers (different colors) of 50 randomized networks during the SGD opti-
mization process in the information plane (in bits): left - with the initial weights; center
- at 400 epochs; right - after 9000 epochs. The reader is encouraged to view the full
videos of this optimization process in the information plane at https://goo.gl/rygyIT and
https://goo.gl/DOWuDD.



The evolution of the layers In the info plane
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Figure 3: The evolution of the layers with the training epochs in the information plane, for different
training samples. On the left - 5% of the data, middle - 45% of the data, and right - 85% of
the data. The colors indicate the number of training epochs with Stochastic Gradient De-
scent from 0 to 10000. The network architecture was fully connected layers, with widths:
input=12-10-8-6-4-2-1=output. The examples were generated by the spherical symmetric
rule described in the text. The green paths correspond to the SGD drift-diffusion phase
transition - grey line on Figure [4]



The layers’ SG distributions
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Figure 4: The layers’ Stochastic Gradients distributions during the optimization process. The
norm of the means and standard deviations of the weights gradients for each layer, as
function of the number of training epochs (in log-log scale). The values are normalized
by the L2 norms of the weights for each layer, which significantly increase during the
optimization. The grey line (~ 350 epochs) marks the transition between the first phase,
with large gradient means and small variance (drift, high gradient SNR), and the second
phase, with large fluctuations and small means (diffusion, low SNR). Note that the gra-
dients log (SNR) (the log differences between the mean and the STD lines) approach a
constant for all the layers, reflecting the convergence of the network to a configuration
with constant flow of relevant information through the layers!



The computational benefit of the hidden layers
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Figure 5: The layers information paths during the SGD optimization for different architec-

tures. Each panel is the information plane for a network with a different number of

hidden layers. The width of the hidden layers start with 12, and each additional layer has
2 fewer neurons. The final layer with 2 neurons is shown in all panels. The line colors
correspond to the number of training epochs.
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Adding hidden layers dramatically
reduces the number of training epochs
for good generalization.

The compression phase of each layer is
shorter when it starts from a previous
compressed layer.

The compression is faster for the
deeper layers. Whereas in the drift
phase the lower layers move first, in the
diffusion phase the top layers compress
first and "pull” the lower layers after
them. Adding more layers seems to
add intermediate representations which
accelerates the compression.

Even wide hidden layers eventually
compress in the diffusion phase.
Adding extra width does not help.



Evolution of the layers with training data size
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Figure 7: The effect of the training data size on the layers in the information plane. Each line
(color) represents a converged network with a different training sample size. Along each
line there are 6 points for the different layers, each averaged over 50 random training
samples and randomized initial weights.

With Increasing training size the layers’
true label information (generalization) |y
Is pushed up and gets closer to the
theoretical IB bound for the rule
distribution.

For the deeper layers the network learns
to preserve more of the information on
Y and better compress the irrelevant
information in X. With larger training
samples more details on X become
relevant for Y.



On The Information Bottleneck Theory Of
Deep Learning

Andrew M Saxe, Yamini Bansal, Joel Dapello,
Madhu Advani, Artemy Kolchinsky, Brendan D Tracey

and David D Cox



IT;Y)

IT;Y)

S
o

o
a

35

30

20

15

10

0.0

6 8

I(X; T)

10

11

12

7999

Epochs

9999

o

Epochs

10

05

6 8

IXx; T)

10

12

7999

Epochs

Epochs

ression and neural nonlinearities

Figure 1. Information plane dynamics and neural nonlinearities. (A) Replication
of Shwartz-Ziv and Tishby (2017) for a network with tanh nonlinearities (except
for the final classification layer which contains two sigmoidal neurons). The
z-axis plots information between each layer and the input, while the y-axis plots
information between each layer and the output. The color scale indicates training
time in epochs. Each of the six layers produces a curve in the information plane
with the input layer at far right, output layer at the far left. Different layers
at the same epoch are connected by fine lines. (B) Information plane dynamics
with ReLU nonlinearities (except for the final layer of 2 sigmoidal neurons). Here
no compression phase is visible in the ReLU layers. For learning curves of both
networks, see appendix A. (C) Information plane dynamics for a tanh network of
size 784-1024-20-20-20-10 trained on MNIST, estimated using the non-parametric
kernel density mutual information estimator of Kolchinsky and Tracey (2017)
and Kolchinsky et al (2017). (D) Information plane dynamics for a ReLU network
with same configuration as panel (C). No compression is observed except in the
final classification layer which contains sigmoidal neurons. See appendix B for the
KDE MI method applied to the original Tishby dataset; additional results using
a second popular nonparametric k-NN-based method (Kraskov et al 2004); and
results for other neural nonlinearities.



Information plane dynamics
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Figure 3. Generalization and information plane dynamics in deep linear networks.
(A) A linear teacher network generates a dataset by passing Gaussian inputs
X through its weights and adding noise. (B) A deep linear student network is
trained on the dataset (here the network has 1 hidden layer to allow comparison
with figure 4(A), see supplementary figure F1 for a deeper network). (C) Training
and testing error over time. (D) Information plane dynamics. No compression is
observed.



Simultaneous fitting and compression
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Figure 6. Simultaneous fitting and compression. (A) For a task with a large task-
irrelevant subspace in the input, a linear network shows no overall compression of
information about the input. (B) The information with the task-relevant subspace
increases robustly over training. (C) However, the information specifically about
the task-irrelevant subspace does compress after initially growing as the network

is trained.
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When a task requires ignoring some inputs, the information with
these inputs specifically will indeed be reduced; but overall mutual
information with the input in general may still increase.



Deep Variational Information Bottleneck

Alexander A. Alemi, lan Fischer, Joshua V. Dillon, Kevin Murphy



Approach

max I(Z,Y) - BI(Z,X)

1(Z,Y) = /dydzp(y,Z)IOg pI()y(j;p/(:i) = /dydzp(y,z)log p[()!(ig) ,

where p(y|z) is fully defined by our encoder and Markov Chain as follows:

4 p(yll')p(ZI-’r)p(m).

p(yl2) =/drp(;1:,y|2) = /d»’l’l)(y|1')l)($|z) =/ (2)

let ¢(y|z) be a variational approximation to p(y|z)

KL[p(Y|2),q(¥|2)] 20 = / dy p(y)2) log p(ylz) > / dy p(ylz) log q(yl2)

and hence

q(y|z)
p(y)

:/dydzp(y,z)logq(y|z)—/dyp(y)logp(y)

1(Z,Y) > / dy dz p(y, ) log

= /dydzp(y,Z)logq(yIZ) +H(Y).

Following standard practice in the IB literature, we assume that the joint distribution p(X,Y, Z)
factors as follows:

p(X,Y,Z) = p(Z|X,Y)p(Y|X)p(X) = p(Z|X)p(Y|X)p(X) (5)
i.e., we assume p(Z|X,Y) = p(Z|X), corresponding to the Markov chain Y < X « Z.

p(y,z) = [dep(z,y,z) = [dxp(x)p(y|e)p(z|z)

1(Z,Y) > / dz dy dz p(x)p(y|x)p(z|z) log q(y])



Approach

I(Z,X) /dzda:p(m z)log /dzdxp x, z)log p(z|z) — /dzp z)log p(z)

let 7(z) be a variational approximation to p(z)
KL[p(Z),r(Z)] > 0 = [dzp(z)logp(z) > [dzp(z)logr(z)

p(z|r)
r(z)

I(Z,X) < /dzdzp(a:)p(zlx) log

I(Z,Y) - BI(Z, X) 2 / dz dy dz p(@)p(y|2)p(z|z) log (y])

p(z|x)

_ﬁ/dzdzp(:l' (z]z) log =g =1TL.

We can approximate p(z,y) =
p(z)p(y|z) using the empirical data distribution p(z,y) = + Zn 1 0z, (2)dy, ()

L~ N Z [/dzp Zl.’Bn lqu(ynl ) Bp(zlwn)logl% .

Suppose we use an encoder of the form p(z|z) = N (z|f*(x), f=(z)), where f. is an MLP which
outputs both the K-dimensional mean y of z as well as the K x K covariance matrix X. Then we
can use the reparameterization trick (Kingma & Welling| [2014) to write p(z|z)dz = p(e)de, where
z = f(x,€) is a deterministic function of = and the Gaussian random variable €.

min

N
Jip = Y]\}— Z IEcswp(es) [— lOg (I(yn.lf(xns 6))] F 46 KL [I)(len)v T(Z)]
n=1

[DKL(P9<M|X>||R(M)) — Dy (Po(M)[IR(M)) < DKL<P0(M|X)||R<M)>j



Classification results

Model | error
Baseline | 1.38%
Dropout | 1.34%
Dropout (Pereyra et al.,[2017) | 1.40%
Confidence Penalty | 1.36%
Confidence Penalty (Pereyra et al.,2017) | 1.17%
Label Smoothing | 1.40%
Label Smoothing (Pereyra et al., 2017) | 1.23%
VIB (6 =1077°) | 1.13%

Table 1: Test set misclassification rate on permutation-invariant MNIST using X' = 256. We com-
pare our method (VIB) to an equivalent deterministic model using various forms of regularization.
The discrepancy between our results for confidence penalty and label smoothing and the numbers
reported in (Pereyra et al.| [2017) are due to slightly different hyperparameters.




Results of error rate and mutual iInformation
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Figure 1: Results of VIB model on MNIST. (a) Error rate vs /3 for K = 256 on train and test set.
“1 shot eval” means a single posterior sample of z, “avg eval” means 12 Monte Carlo samples. The
spike in the error rate at 3 ~ 10~2 corresponds to a model that is too highly regularized. Plotted
values are the average over 5 independent training runs at each 3. Error bars show the standard
deviation in the results. (b) Same as (a), but for K = 2. Performance is much worse, since we pass
through a very narrow bottleneck. (c) I(Z,Y") vs I(Z, X) as we vary 3 for K = 256. We see that
increasing I(Z, X) helps training set performance, but can result in overfitting. (d) I(Z, X) vs 3
for K = 256. We see that for a good value of 3, such as 10~2, we only need to store about 10 bits
of information about the input.



Results of adversarial robustness

Metric | Determ | IRv2 | VIB(0.01)

Sucessful target | 1.0 1.0 0.567
Ly | 645 14.43 | 43.27
L. | 0.18 0.44 | 0.92

Table 2: Quantitative results showing how the different Inception Resnet V2-based architectures
(described in Section@ respond to targeted Lo adversarial examples. Determ is the deterministic
architecture, /Rv2 is the unmodified Inception Resnet V2 architecture, and VIB(0.01) is the VIB
architecture with 3 = 0.01. Successful target is the fraction of adversarial examples that caused
the architecture to classify as the target class (soccer ball). Lower is better. L, and L., are the
average L distances between the original images and the adversarial examples. Larger values mean
the adversary had to make a larger perturbation to change the class.



Nonlinear Information Bottleneck

Artemy Kolchinsky, Brendan D. Tracey and David H. Wolpert



Approach

Ip(X; M) = Dyy(Po(M|X)||R(M)) — Dxr.(Po(M)||R(M)) < Dy (Pp(M|X)||R(M)) (Variable IB)
Ih(X; M) < [p(X; M) := —% Y log % y e Pa [V (fo(xi) Zo(x) ||V (fo %)) Zo(x;))] (Nonlinear IB)
i j

Kolchinsky, A.; Tracey, B.D. Estimating Mixture Entropy with Pairwise
Distances. Entropy 2017, 19, 361.



Results on MNIST
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Figure 1. Top row: Info-plane diagrams for nonlinear IB and variational IB (VIB) on the MNIST
training (left) and testing (right) data. The solid lines indicate means across five runs, shaded region
indicates the standard error of the mean. The black dashed line is the data-processing inequality bound
1(Y; M) < I(X; M), the black dotted line indicates the value of I(Y; M) achieved by a baseline model
trained only to optimize cross-entropy. Bottom row: Principal component analysis (PCA) projection
of bottleneck layer activity (on testing data, no noise) for models trained with regular cross-entropy
loss (left), VIB (middle), and nonlinear IB (right) objectives. The location of the nonlinear IB and VIB
models shown in the bottom row is indicated with the green vertical line in the top right panel.



Results on FashionMNIST
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Figure 2. Top row: Info-plane diagrams for nonlinear IB and VIB on the FashionMNIST dataset. Bottom
row: PCA projection of bottleneck layer activations for models trained only to optimize cross-entropy
(left), VIB (middle), and nonlinear IB (right) objectives. See caption of Figure 1 for details.



Results on FashionMNIST

Table 1. Amount of prediction I(Y; M) achieved at compression level I(X; M) = log10 for both
nonlinear IB and VIB.

Dataset NonlinearIB VIB

Training 3.22 3.09

s Testing 2.99 2.88

: Training 2.85 2.67
FashionMNIST Testing 258 2 46
Training 1.37 1.26

California housing Testing 1.13 1.07




Conclusions

* The information bottleneck may bring us better performance with a simple structure.

* The information bottleneck is much useful for speech information factorization.

* The most important part of learning Is actually forgetting.
— Naftali Tishby



