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Information bottleneck

• A network rids noisy input data of extraneous details as if by squeezing the 

information through a bottleneck, retaining only the features most relevant 

to general concepts.



The Information Bottleneck Method

Naftali Tishby, Fernando C. Pereira, and William Bialek



Relevant information
• We define the relevant information in a signal x ∈ X as being the information that this signal 

provides about another signal y ∈ Y . Understanding the signal x requires more than just 
predicting y, it also requires specifying which features of X play a role in the prediction.

• We formalize this problem as that of finding a short code for X that preserves the maximum 
information about Y .

• That is, we squeeze the information that X provides about Y through a ‘bottleneck’ formed 
by a limited set of codewords X˜. This approach yields an exact set of self consistent 
equations for the coding rules X → X˜ and X˜ → Y . 

• The relevance variable, denoted here by Y , must not be independent from the original signal 
X, namely they have positive mutual information I(X; Y). 
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• The relevance variable, denoted here by Y , must not be independent from the original signal 
X, namely they have positive mutual information I(X; Y).

• We would like our relevant quantization X˜ to compress X as much as possible. In contrast to 
the rate distortion problem, however, we now want this quantization to capture as much of 
the information about Y as possible.

• The amount of information about Y in X˜ is given by 

• We can find the optimal assignment by minimizing the functional 

Information bottleneck principle
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DL and IB

• The goal of any supervised learning is to capture and efficiently represent the relevant information 
in the input variable about the output-label-variable. Namely, to extract an approximate minimal 
sufficient statistics of the input with respect to the output.

• The information theoretic interpretation of minimal sufficient statistics suggests a principled way of 
doing that: find a maximally compressed mapping of the input variable that preserves as much as 
possible the information on the output variable.

• This is precisely the goal of the Information Bottleneck (IB) method.

• Basic questions about the design principles of deep networks, the optimal architecture, the number 
of required layers, the sample complexity, and the best optimization algorithms, are not well 
understood.



Relevant information in DNNs



Information characteristics of the layers

• Each layer in a DNN processes inputs only from the previous layer, which means that the network 
layers form a Markov chain. 

• An immediate consequence of the DPI is that information about Y that is lost in one layer cannot be 
recovered in higher layers. Namely, for any i≥j it holds that

• Achieving equality here is possible if and only if each layer is a sufficient statistic of its input. By 
requiring not only the most relevant representation at each layer, but also the most concise 
representation of the input, each layer should attempt to maximize while minimizing 

as much as possible.



Finite samples and generalization bounds
A method for evaluating the network. Let N be a 
given DNN, and denote by DN the IB distortion 
of the network’s output layer, i.e.                  ,and 
by RN the representational complexity of the 
output layer, i.e.           . We can now define two 
measures for the performance of the network in 
terms of prediction and compression. The first 
one is the generalization gap,

which bounds the amount of information about 
Y that the network did not capture although it 
could have. The second measure is the 
complexity gap,

which bounds the amount of unnecessary 
complexity in the network. 



Finite samples and generalization bounds

• The empirical input layer of a DNN alone cannot guarantee good generalization even though it 
contains more information about the target variable Y than the hidden layers, as its representation 
of the data is too complex. Compression is thus necessary for generalization. 

• Here is no reason to believe that current training algorithms for DNNs will reach the optimal point 
of the IB finite sample bound.

• However, we do believe that the improved feature detection along the network’s layers corresponds 
to improvement on the information plane in this direction. In other words, when placing the layers 
of a trained DNN on the information plane, they should form a path similar to the green curve in 
figure 2.

• It is thus desirable to find new training algorithms that are based on the IB optimality conditions and 
can shift the DNN layers closer to the optimal limit.
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Main results

• (i) the Stochastic Gradient Decent (SGD) optimization has two main phases. In the first and shorter 
phase the layers increase the information on the labels(fitting), while in the second and much longer 
phase the layer reduce the information on the input(compression phase).

• (ii) The converged layers lie on or very close to the IB theoretical bound.

• (iii) The main advantage of the hidden layers is computational, as they dramatically reduce the 
stochastic relaxation times. 

• (iv) The hidden layers appear to lie close to critical points on the IB bound.



Snapshots of layers in the information plane



The evolution of the layers in the info plane



The layers’ SG distributions

The diffusion processes can be described by a 
Focker-Planck equation [see e.g. Risken (1989)], 
whose stationary distribution maximizes the 
entropy of the weights distribution, under the 
training error constraint.
That in turn maximizes the conditional entropy, 

, or minimizes the mutual information 
, because the input 

entropy,          , does not change.



The computational benefit of the hidden layers
1. Adding hidden layers dramatically 

reduces the number of training epochs 
for good generalization.

2. The compression phase of each layer is 
shorter when it starts from a previous 
compressed layer.

3. The compression is faster for the 
deeper layers. Whereas in the drift 
phase the lower layers move first, in the 
diffusion phase the top layers compress 
first and ”pull” the lower layers after 
them. Adding more layers seems to 
add intermediate representations which 
accelerates the compression.

4. Even wide hidden layers eventually 
compress in the diffusion phase. 
Adding extra width does not help.



Evolution of the layers with training data size

• With increasing training size the layers’ 
true label information (generalization) IY
is pushed up and gets closer to the 
theoretical IB bound for the rule 
distribution.

• For the deeper layers the network learns 
to preserve more of the information on 
Y and better compress the irrelevant 
information in X. With larger training 
samples more details on X become 
relevant for Y.
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Compression and neural nonlinearities



Information plane dynamics



Simultaneous fitting and compression

When a task requires ignoring some inputs, the information with 
these inputs specifically will indeed be reduced; but overall mutual 
information with the input in general may still increase. 
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Approach

max
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Classification results



Results of error rate and mutual information



Results of adversarial robustness



Nonlinear Information Bottleneck

Artemy Kolchinsky, Brendan D. Tracey and David H. Wolpert



Approach

(Variable IB)

(Nonlinear IB)

Kolchinsky, A.; Tracey, B.D. Estimating Mixture Entropy with Pairwise 
Distances. Entropy 2017, 19, 361.



Results on MNIST



Results on FashionMNIST



Results on FashionMNIST



Conclusions

• The information bottleneck may bring us better performance with a simple structure.

• The information bottleneck is much useful for speech information factorization.

• The most important part of learning is actually forgetting.
—— Naftali Tishby


