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DEEP PIECEWISE HASHING FOR EFFICIENT HAMMING SPACE RETRIEVAL

* Chinese Academy of Sciences

* Motivation

* consider both discrimination and robustness for the dissimilar points inside the Hamming
ball

* Datasets
o MS—COCO
« NUS-WIDE

e Methods

* Deep Piecewise Hashing
e Piecewise loss

* Experiment
e evaluate the retrieval performance of DPH with eight state—of—-the—art methods



DEEP PIECEWISE HASHING FOR EFFICIENT HAMMING SPACE RETRIEVAL

* Chinese Academy of Sciences

e Methods

* consists of two parts, including feature extractor and piecewise

* use AlexNet as the base network to obtain representative features of images, and use the
tanh function to transform the feature representation into continuous code.

* piecewise loss solves the problem of data misclassification around Hamming ball, but also
keeps the model’s discrimination and robustness
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Fig. 2. The framework of DPH. The entire framework consists of two parts: feature extraction and piecewise loss.



DEEP PIECEWISE HASHING FOR EFFICIENT HAMMING SPACE RETRIEVAL

* Chinese Academy of Sciences

e Methods

* The piecewise loss function is designedas follows:
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DEEP PIECEWISE HASHING FOR EFFICIENT HAMMING SPACE RETRIEVAL

* Chinese Academy of Sciences

* Experiments

Table 1. The MAP@H < 2 for different bits of DPH and

NUS-WIDE
baselines on MS-COCO and NUS-WIDE image datasets. e
Method MS-COCO NUS-WIDE S S e R ————
32 a3 64 32 a3 64 § gj:\:: : 0;4_\
KSH | 0513 | 0.244 | 0.025 | 0.563 | 0.422 | 0.063 g3 £os
SDH | 0.663 | 0.526 | 0.513 | 0.671 | 0.592 | 0.453 02 o1
CNNH | 0.562 | 0532 | 0.510 | 0.590 | 0.576 | 0.574 i 00l
DNNH | 0.609 | 0.522 | 0.510 | 0.624 | 0.592 | 0.563 N umber ot Bie Number of Bits
DHN | 0.663 | 0.513 | 0421 | 0.710 | 0.674 | 0.564 (a) (b)
HashNet | 0.689 | 0.562 | 0.536 | 0.724 | 0.680 | 0.612
DCH | 0.755 | 0729 | 0.709 | 0.776 | 0.758 | 0.713
MMHH | 0.765 | 0.797 | 0.809 | 0.793 | 0.801 | 0.799
DPH | 0.796 | 0.841 | 0.842 | 0.817 | 0.829 | 0.817
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DEEP HASHING WITH HASH CENTER UPDATE FOR EFFICIENT IMAGE RETRIEVAL
* RWTH Aachen University

Motivation
e Canonical Correlation Analysis (CCA) was used such that the correlation between the
feature vectors and label vectors was maximized
Datasets

« M5—-COCO
e NUS-WIDE

Methods

e DeepCentral Similarity Hashing (DCSH) method
* A novel weighted mean and thresholding-based hash center update scheme is proposed.
e CCA-based loss formulation

Experiment

e Two multi—labeled datasets, were used for evaluating the final retrieval
performance of DCSH.



DEEP HASHING WITH HASH CENTER UPDATE FOR EFFICIENT IMAGE RETRIEVAL
* RWTH Aachen University

e Methods

* The residual network is used as the basic feature extractor which was pre-trained on
ImageNet.

* hashing layer is used to generate hashes
* intermediate layer is used to generate high output dimensionality
e a linear combination of the two losses as, Lbcsi= Lhash +a Lclass
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Fig. 1: Overview of the proposed Deep Central Similarity Hashing network architecture. ResNet layers according to [31] is used as the backbone network for basic feature
extraction. Both hashing and classification layer, consist of a fully connected (FC) layer with subsequent sigmoid activation. The intermediate layer comprises a fully connected layer
with subsequent ReL.U activation. Bits indicate the bit length of the hash code. Classes indicate the number of categories in the dataset.



DEEP HASHING WITH HASH CENTER UPDATE FOR EFFICIENT IMAGE RETRIEVAL
* RWTH Aachen University

* Experiments

MS-COCO NUS-WIDE

Method 16 bits | 32 bits | 48 bits | 64 bits Method 12 bits | 24 bits | 32 bits | 48 bits
DCSH (ours) | 0.805 | 0.847 | 0.859 | 0.861 | DCSH (Ours) | 0.823 | 0.833 | 0.5841 0.857
C5Q[21] 0.796 | 0.838 - 0.5861 DPSH [15] 0794 | 0.822 | 0.838 | 0.851
DCCH [19] 0.659 | 0729 | 0.731 0.739 DCCH [19] 0782 | 0.814 | 0825 | 0.834

HashNet [3] 0.687 | 0718 | 0730 | 0.736 CSQ [21] - - 0.825 -
DHN [28] 0.677 | 0.701 0.695 0.694 DSDH [26] 0776 | 0.808 | 0.820 | 0.829
DNNH [29] 0593 | 0603 | 0604 | 0610 DDSH [17] 0.791 0.815 | 0.821 0.827
CNNH [30] 0564 | 0574 | 0571 0.567 DTSH [27] 0773 | 0808 | 0812 | 0.814

Table 1: MAP on MS-COCO and NUS-WIDE for different approaches.



GRAPH CONVOLUTIONAL NETWORK BASED SEMI-SUPERVISED LEARNING ON MULTI-SPEAKER MEETING DATA

* Xiamen University

Motivation

* graph convolutional networks(GCN) exploit the connectivity patterns between nodes to improve
learning performance

* Datasets

e Voxcelebl
e Voxceleb?2

e Methods

 present a GCNbased approach for semi—supervised learning
* present a self-correcting training mechanism

* Experiment

 After a network is trained, the clustering algorithms are evaluated in a simulated
meetlng scenario.

e run ten tests on each group
 evaluate the performance in terms of the average precision, recall, and F-score



GRAPH CONVOLUTIONAL NETWORK BASED SEMI-SUPERVISED LEARNING ON MULTI-SPEAKER MEETING DATA

* Xiamen University

e Methods

» Affinity Graph Construction: based on the embeddings, each sample is regarded as a vertex and the cosine
similarity is used to find K nearest neighbors for each sample

e Cluster Proposal Generation: setting various thresholds on the edge weights of this graph, a set of
super-vertices is generated, and then a higher level graph based on a super-vertex is constructed

* Cluster Detection: A graph convolutional network is used to extract features for each proposal, and high-
quality clusters are selected from the generated cluster proposals.
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Fig. 1: The pipeline of our structure. Utterances are first fed into feature extractors to obtain speaker embeddings. An affinity graph is
constructed to perform clustering. The cluster results with pseudo-labels are applied to re-training the deep embedding extractor.



GRAPH CONVOLUTIONAL NETWORK BASED SEMI-SUPERVISED LEARNING ON MULTI-SPEAKER MEETING DATA

* Xiamen University

e Methods

* Cluster Segmentation: Another similar GCN is developed to exclude outliers from the proposal, in the model
predictions, the outliers are removed from the proposals.

» De—Overlapping: de-overlap procedure uses the predicted GCN scores and sorts them in descending order.
The highest GCN score is selected for the proposals to partition the unlabeled dataset into a proper cluster.
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Fig. 1: The pipeline of our structure. Utterances are first fed into feature extractors to obtain speaker embeddings. An affinity graph is
constructed to perform clustering. The cluster results with pseudo-labels are applied to re-training the deep embedding extractor.



GRAPH CONVOLUTIONAL NETWORK BASED SEMI-SUPERVISED LEARNING ON MULTI-SPEAKER MEETING DATA

* Xiamen University

* Experiments

Table 2: Comparison of speaker clustering when the number of clus-
ters 1s 3. 6. and 9. The results are the average of the clustering results
on 10 different sets of testing data.

# Methods  Precision Recall F-score

Table 3: Performance comparisons of clustering and speaker recog-
nition results using models trained with different clustering pseudo-
labels. The * symbol indicates that label de-noising was employed.

= = Model Precision Recall F-score EER  minDCF
sc 0% oes o) Bl - 5w 0w
3 AHC 0.75 0.77 0.75 + K-means 0.78 0.54 0.64 2.04 0.255
GCN 0.82 0.79 0.80 + SC 0.74 0.67 0.70 [.73 0.213
Komeans 0.78 0.56 0.65 + AHC 0.79 0.77 0.77 [.51 0.186
SC 071 0.65 0.67 + GCN 0.83 0.79 0.81 [.43 0.174
6  AHC 0.77 0.79 0.78 + GCN#* 0.83 0.79 0.81 [.30 0.152
GCN 0.84 0.78  0.81 Oracle - - - .28 D.165
K-means 0.77 0.53 0.63
SC 0.73 0.66 0.69
9  AHC 0.82 0.76 0.78

GCN 0.85 0.80 0.82




TURN-TO-DIARIZE: ONLINE SPEAKER DIARIZATION CONSTRAINED BY TRANSFORMER TRANSDUCER SPEAKER
TURN DETECTION

* Google LLC

* Motivation

* the system only requires including speaker turn tokens during the transcribing process, which
largely reduces the human efforts involved in data collection.

* Datasets

 internal call center domain dataset
e Callhome American English corpus

e Methods

 transformer transducer—based model for joint ASR and speaker turn detection
* a constrained spectral clustering algorithm

* speaker diarization system for streaming on-device applications

* Experiment

e show the experimental results of the “dense d-vector” and the proposed “turn—to-—

diarize” systems on the Internal Inbound, Outbound datasets, as well as the publicly
available Callhome evaluation set.



TURN-TO-DIARIZE: ONLINE SPEAKER DIARIZATION CONSTRAINED BY TRANSFORMER TRANSDUCER SPEAKER
TURN DETECTION

* Google LLC

e Methods

* The input utterance is first fed into a transformer transducer model for joint ASR and speaker turn detection.

e Then the utterance is segmented into speaker turns, and each turn is fed into an LSTM
based speaker encoder to extract a d-vector embedding.

* use a spectral clustering algorithm to cluster these turn-wise d-vectors, but with constraints from the

detected speaker turns.
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wordl word2 <st> <st> word5 <st>
transcript
[ Speaker encoder ]
\ AN PN J
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diarization results



TURN-TO-DIARIZE: ONLINE SPEAKER DIARIZATION CONSTRAINED BY TRANSFORMER TRANSDUCER SPEAKER
TURN DETECTION
* Google LLC

Datasets

* The “Outbound”, which includes 450 conversations initiated by the call center. This dataset
has approximately 35 hours of speech in total. Each utterance has 2 speakers.

e The “Inbound” subset, which includes 250 conversations initiated by
customers. This dataset has approximately 22 hours of speech in total.
Fach utterance has 2 to 10 speakers.

e the train subset has been used for training the speaker turn detection
model, we report the diarization results on the eval set of 20 utterances,

which is about 1.7 hours of recordings in total.



TURN-TO-DIARIZE: ONLINE SPEAKER DIARIZATION CONSTRAINED BY TRANSFORMER TRANSDUCER SPEAKER
TURN DETECTION

* Google LLC

* Experiments

Table 2. Confusion (%), total DER (%) and GFLOPS/s on three datasets for different embeddings and methods.

System Method ]r}bound OL}tbOLlrlcl Callhome Eval GFLOB’ s | GFLOP/s
- Cont. DER | Cont. DER | Conf. DER at 10min at 1h
Dense d-vector Dense 17.98 22.13 | 10.66 1597 | 5.39 7.76 0.85 36.54
Dense + Auto-tune 14.09 18.24 9.56 14.88 5.42 7.79 4.76 361.37
Turn 17.87 1943 8.41 10.34 | 8.23 10.08 1.00 [.18
Turn-to-diarize Turn + E2CP 17.21 l§.77 7.94 0.86 3.56 5,41 1.00 [.18
Turn + Auto-tune 13.83 15.39 | 7.01 8.93 5.11 6.95 .02 2.81
Turn + E2CP + Auto-tune | 13.66 15.22 | 6.86 8.78 3.49 5.33 .02 2.81
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