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MAP criterion for verification 

• Verification: Given a class M, if x belongs M or 
not? 

• Equivalently,  which one is more probably?  

– A: x is generated from M 

– B: x is generated from any classes other than M? 

• MAP criterion:  p(A|x) vs. p(B|x) 

• p(A|x)=p(x|A)/(p(x|A) + p(x|B)) [with equal 
prior] 

 



MAP criterion for verification 

• p(x|A) = p(x|M), but what is p(x|B)? 

• With a continuous prior for the class, p(x|B) 
need integrate all possible classes, which is 
equal to p(x). 

 



Bayesian scoring 
• We have x1,…,xn, now want to test if x is in 

the same class. 

• Additional difficulty is that p(x|A) is not easy 
to compute, due to unknown class mean.  

• A key idea is to use a distribution for the mean, 
rather than a value.  

 



Two difficulties in computing p(x|A) 

• How to estimate the distribution of the mean, 
given x1, …, xn, i.e., p(m|x1,…,xn) 

• How to compute p(x|A) by giving p(m|x1,…xn)? 



Mean estimation: uncertainty 
clamping 

• Assume a generative model for p(m) and 
p(x|m), then given samples x1,…xn, it is 
possible to compute the posterior 
p(m|x1,…xn). This is called ‘inference’.  

• If p(m) = N(0,SW), p(x|m)=N(m,SB), 

• P(m|x1,…,xn)=N(nSB/(nSB+ 
SW)𝑥 , SB*SW/(nSB+SW)) 

 



Likelihood prediction: Uncertainty 
propagation 

• Given p(m|x1,…xn)=N(b,v), it is easy to compute: 

         p(x; x1,…xn) = N(b, SW + v) 

 



Important message 

• We separate the scoring into two phases: 

– Uncertainty clamping, that takes the observation 
as the evidence, to bias the generative process, to 
represent the specific class. (think how if no this 
step?) 

– Uncertainty propagation, that takes all the 
possibilities of the mean estimation to predict the 
likelihood.  



Important message 

• This is essentially a full 
Bayesian procedure 
[Bishop 06, Chapt 3.] 

 



Complex uncertainty with enroll-test 
mismatch 

• In SRE, one perform a registration, and after 
two months, he found he cannot be 
recognized. 

• What happens in these two months? 

– Aging? 

– Emotion? 

– Style? 

– Environment? 



Conjecture 

• Statistical property mismatch between 
enrollment & test 

– For enroll, people often pronounce in similar ways 
in a single environment, usually without emotion 
change.  

– For test, people tend to have more complexity in 
terms of all the above factors. 



Let’s see the picture 

Observation: Distributions of enroll and test are generally different. 



Some possible ‘solution’ 

• Use the enroll distribution: good for estimate 
mean, but bad for prediction likelihood and 
normalization. 

• Use the test distribution: Incorrect estimate 
the mean, but fine for prediction likelihood 
and normalization. 

• Map the data from enroll to test? Or vice 
versa? Possible, but the mapping will break 
the valuable statistical information. 



A good solution 

• We can design a transform that leads to 
maximum likelihood, but the likelihood is 
based on the statistical property of both 
conditions.  

• We will enjoy the statistical knowledge of both 
conditions, and utilize transform when 
necessary. 



Bayesian scoring for condition 
mismatch 

• Black: enroll, red: test; dot: posterior, solid: marginal. 
• Key point: the posterior will be transformed as well. 



Formulation with linear transform 

• Suppose a linear transform on class means: 

 

• The posterior in the enroll condition:  

 

 

• Map the mean, the distribution in the test 
condition will be:  

 

 



Formulation with linear transform 

• The likelihood will be:  

 

 

 

 

 

• M can be trained by maximum likelihood. 

 



More on uncertainty manipulation 

• If we only know one enrollment, but not only knows its 
mean, but also its distribution? 

• P(x) = N(u,v) 
• And we have known posterior p(m|x)=N(ax, b) 
• We can derive the prediction for p(m) by marginalizing the 

x: 
• P(m) = N(au, va^2+b) 
• For a=1, we recover the uncertainty propagation base form. 

For v -> inf, the posterior goes to inf, indicating that if the 
observation is not reliable, then p(m) will be not reliable. 
For v=0, goes to usual posterior. Then the usual posterior is 
a case that the observation is extremely assured. 



i-vector uncertainty for enrollment 

• Considering i-vector has a distribution N(u,v), then it is 
possible to derive a better enrollment.  

• This enrollment has usually a larger posterior, reflecting the 
uncertainty of the i-vector. 
 
 



i-vector uncertainty for test 

• How test vectors with uncertainty? 
 

•  𝑝1 𝑥 𝑚 𝑝1 𝑚 𝑥1,…𝑥𝑛 𝑝2 𝑥 𝑑𝑚𝑑𝑥 =  𝑝1 𝑥 𝑝2 𝑥 𝑑𝑥 

 

• A correlation of two distributions.  



A real case 

• Dayana Ribas and Emmanuel Vincent, AN IMPROVED UNCERTAINTY PROPAGATION 
METHOD FOR ROBUST I-VECTOR BASED SPEAKER RECOGNITION, ICASSP 2019. 

• Suppose enhancement speech y’ for x, the 
estimate for clean y is p(y|y’) is Gaussian.  

• The i-vector system is trained with clean 
speech. 

• Then the author wanted to involve the 
uncertainty in i-vector estimation. 

 



Summary 

• Since uncertainty is ubiquitous in ML, it should not be 
forgotten at any time. 

• Especially in the deep learning era, it seems the uncertainty 
is largely replaced by huge data, with very weak prior.  

• My conjecture is that the prior for global properties could 
be weak (more covered by data), but local prior would be 
useful. 

• A possible (and interesting) ideal is a deep vector with a 
variance. This is essentially the DNF could do. The analysis 
presented here may pave the way for that kind of new 
embedding (Burno people call it meta embedding). 

Brummer et al. Gaussian meta-embeddings for efficient scoring of a heavy-tailed 
PLDA model, 2018. 


